冻电子显微镜技术(cryoelectron microscopy)是从20世纪70年代提出的,经过近10年的努力,在80年代趋于成熟。它的研究对象非常广泛,包括病毒、膜蛋白、肌丝、蛋白质核苷酸复合体、亚细胞器等等。
一方面,冷冻电子显微镜技术所研究的生物样品既可以是具有二维晶体结构的,也可以是非晶体的;而且对于样品的分子量没有限制。因此,大大突破了X-射线晶体学只能研究三维晶体样品和核磁共振波谱学只能研究小分子量(小于100KDa)样品的限制。
另一方面,生物样品是通过快速冷冻的方法进行固定的,克服了因化学固定、染色、金属镀膜等过程对样品构象的影响,更加接近样品的生活状态。现在,冷冻电子显微镜都具备自动图像采集系统。CCD(charged-couple device)照相机能快速、动态的记录电子衍射图,但由于像素的限制,其分辨率不如照相胶片。CCD和照相胶片所记录的是生物样品空间结构的二维投影,利用各种计算机软件程序包,可以从电镜的二维图像重构样品的三维结构,即三维重构。现已开发出许多软件程序包可供计算机处理使用,大大方便了生物样品的结构重构。
一、样品准备 用于冷冻电镜研究的生物大分子样品必须非常纯净。生物样品是在高真空的条件下成像的,所以样品的制备既要能够保持本身的结构,又能抗脱水、电子辐射。一种方法是通过快速冷冻使含水样品中的水处于玻璃态,也就是在亲水的支持膜上将含水样品包埋在一层较样品略高的薄冰内。该方法有两个关键步骤:一是将样品在载网上形成一薄层水膜;二是将第一步获得的含水薄膜样品快速冷冻。在多数情况下,用手工将载网迅速浸入液氮内可使水冷冻成为玻璃态。其优点在于将样品保持在接近“生活”状态,不会因脱水而变形;减少辐射损伤;而且通过快速冷冻捕捉不同状态下的分子结构信息,了解分子功能循环中的构象变化。另一种方法是通过喷雾冷冻装置(spray-freezing equipment),利用结合底物混合冰冻技术 (spray-freezing),可以把两种溶液(如受体和配体)在极短的时间内混合起来 (ms量级),然后快速冷冻,将其固定在某种反应中间状态,这样能对生物大分子在结合底物时或其他生化反应中的快速的结构变化进行测定,深入了解生物大分子的功能。
二、数据采集 冷冻的样品通过专门的设备——冷冻输送器转移到电镜的样品室。在照相之前,必须观察样品中的水是否处于玻璃态,如果不是则应重新制备样品。由于生物样品对高能电子的辐射敏感,照相时必须使用最小曝光技术(minimal exposure technic)。要得到高分辨率的电镜图像,照相时累积的电子剂量不能超过临界剂量1000到2000e-nm-2;中等分辨率的电镜图像图像不能超过临界剂量 10000e-nm-2。