目录

  • 1 量化投资概论
    • 1.1 授课计划
    • 1.2 优秀结课论文分享
    • 1.3 量化鼻祖:西蒙斯
    • 1.4 量化投资的定义
    • 1.5 量化投资的特点
    • 1.6 量化投资的发展史
    • 1.7 量化投资的前景
    • 1.8 章节习题
  • 2 Python基础
    • 2.1 环境配置
    • 2.2 数据结构
    • 2.3 基本语句
    • 2.4 基本函数
    • 2.5 类与对象
    • 2.6 模块和包
    • 2.7 标准库
    • 2.8 Numpy库
    • 2.9 Pandas库
    • 2.10 Matplotlib库
    • 2.11 案例:金融数据分析之Pyhton实现
    • 2.12 章节习题
  • 3 统计学基础*
    • 3.1 统计函数库(自学)
    • 3.2 描述性统计
    • 3.3 随机变量
    • 3.4 统计推断
    • 3.5 方差分析
    • 3.6 回归分析
    • 3.7 章节习题
  • 4 金融学基础
    • 4.1 金融分析库(自学)
    • 4.2 资产收益率与风险
    • 4.3 投资组合理论
    • 4.4 资本资产定价模型
    • 4.5 Fama-French 因子模型
    • 4.6 章节习题
  • 5 金融时间序列分析*
    • 5.1 金融时间序列库(自学)
    • 5.2 基本概念
    • 5.3 基本性质
    • 5.4 金融时间序列预测
    • 5.5 波动率
    • 5.6 章节习题
  • 6 配对交易策略
    • 6.1 配对交易策略
    • 6.2 最小距离法之实战分析
    • 6.3 协整法之实战分析
    • 6.4 随机价差法之实战分析*
    • 6.5 章节习题
  • 7 技术指标策略
    • 7.1 技术指标库(自学)
    • 7.2 K线图
    • 7.3 KDJ 策略
    • 7.4 RSI 策略
    • 7.5 MACD 策略
    • 7.6 BOLL 策略
    • 7.7 DMI 策略
    • 7.8 CCI 策略
    • 7.9 MT 策略
    • 7.10 PTV 策略
    • 7.11 OBV 策略
    • 7.12 ROC 策略
    • 7.13 BIAS 策略
    • 7.14 其他技术指标策略
    • 7.15 章节习题
  • 8 机器学习在量化投资中的应用*
    • 8.1 机器学习库
    • 8.2 量化投资之逻辑回归算法模型
    • 8.3 量化投资之决策树算法模型
    • 8.4 量化投资之随机森林算法模型
    • 8.5 量化投资之支持向量机算法模型
    • 8.6 量化投资之集成算法模型
    • 8.7 量化投资之人工神经网络算法模型
    • 8.8 章节习题
  • 9 深度学习在量化投资中的应用**
    • 9.1 深度学习库
    • 9.2 量化投资之TensorFlow
    • 9.3 量化投资之PyTorch
    • 9.4 量化投资之MXNet
    • 9.5 章节习题
  • 10 附     录
    • 10.1 量化武器库大全
    • 10.2 2022年量化金融分析师全国统一考试考试大纲
投资组合理论

4.3  投资组合理论(Portfolio Theory)

现代投资组合理论 主要由 投资组合理论资本资产定价模型、APT模型、有效市场理论以及行为金融理论等部分组成。它们的发展极大地改变了过去主要依赖基本分析的传统投资管理实践,使现代投资管理日益朝着系统化、科学化、组合化的方向发展。

1952年3月,美国经济学家 哈里·马科威茨 发表了《证券组合选择》的论文,作为现代证券组合管理理论的开端。马科威茨对风险和收益进行了量化,建立了 均值方差模型,提出了确定最佳资产组合的基本模型。由于这一方法要求计算所有资产的 协方差矩阵,严重制约了其在实践中的应用。

1964年,威廉·夏普提出了可以对协方差矩阵加以简化估计的单因素模型,极大地推动了投资组合理论的实际应用。

20世纪60年代,夏普林特 和 莫森 分别于1964、1965和1966年提出了 资本资产定价模型(CAPM)。该模型不仅提供了评价收益-风险相互转换特征的可运作框架,也为投资组合分析、基金绩效评价提供了重要的理论基础。

1976年,针对CAPM模型所存在的不可检验性的缺陷,罗斯 提出了一种替代性的资本资产定价模型,即 APT模型。该模型直接导致了多指数投资组合分析方法在投资实践上的广泛应用。


4.3.1 投资组合收益与风险及其Python实现


4.3.2 均值-方差模型


4.3.3 均值-方差模型之Python实现


  • 数据集


4.3.4 Black-Litterman模型


4.3.5 Black-Litterman模型之Python实现


  • 数据集