目录

  • 1 绪论
    • 1.1 课程主要内容概述
    • 1.2 全球变化研究的兴起
    • 1.3 地球气体成分的变化
    • 1.4 温室效应与土地退化
    • 1.5 水污染、植被破坏与物种灭绝
    • 1.6 海平面上升、垃圾危害与人口增长
  • 2 地球系统与全球变化
    • 2.1 地球表层系统
    • 2.2 Gaia(盖亚) 假说与新地球观
    • 2.3 全球生命系统对物质循环的调控
    • 2.4 全球变化的科学内涵
    • 2.5 全球变化研究的主要内容及意义
    • 2.6 主要的全球变化-大气成分变化(上)
    • 2.7 主要的全球变化-大气成分变化(下)
    • 2.8 主要的全球变化-土地利用和土地覆盖变化
    • 2.9 主要的全球变化-全球气候变化(上)
    • 2.10 主要的全球变化-全球气候变化(下)
    • 2.11 主要的全球变化-人口增长、生物多样性变化、荒漠化
    • 2.12 当代气候变化的主要观点(上)
    • 2.13 当代气候变化的主要观点(下)
    • 2.14 气候变化的诱因——自然因素
    • 2.15 气候变化的诱因——人为因素
    • 2.16 当代气候变化的特点及后果
    • 2.17 气候变化问题的非主流思考
  • 3 全球变化与植物生理生态反应
    • 3.1 生态学概论
    • 3.2 植物生理生态学实验 (上)
    • 3.3 植物生理生态学实验 (下)
    • 3.4 大气CO2浓度升高与植物的生理反应(上)
    • 3.5 大气CO2浓度升高与植物的生理反应 (下)
    • 3.6 水热和营养环境改变下植物对CO2浓度的响应
    • 3.7 辐射环境变化及植物的生理生态反应
  • 4 生物入侵与全球变化
    • 4.1 生物入侵基本概念
    • 4.2 生物入侵的模式及原因
    • 4.3 生物入侵的理论假说
    • 4.4 生物入侵效应和规模
    • 4.5 生物入侵的后果
    • 4.6 入侵生物学的研究动态
  • 5 陆地生态系统与全球变化的相互作用
    • 5.1 模拟实验
    • 5.2 定位观测和台站网络
    • 5.3 样带研究
    • 5.4 模型模拟
    • 5.5 全球变化对生态系统功能、组成及结构的影响
    • 5.6 陆地生态系统对全球变化的反馈作用
  • 6 水生生态系统与全球变化的相互作用
    • 6.1 水环境的性质
    • 6.2 水体富营养化
    • 6.3 气候变化和臭氧层破坏
    • 6.4 温度变化及其影响
    • 6.5 水位和水量变化及其影响
    • 6.6 营养成分和pH值变化及其影响
    • 6.7 辐射和气体溶解度的变化及其影响
    • 6.8 水生生态系统对全球变化的反馈
  • 7 生物地球化学循环
    • 7.1 生物地球化学循环的研究特点
    • 7.2 大气圈
    • 7.3 水圈
    • 7.4 岩石圈
    • 7.5 生物圈
    • 7.6 CO2循环及相关过程 (上)
    • 7.7 CO2循环及相关过程(中)
    • 7.8 CO2循环及相关过程(下)
    • 7.9 甲烷和一氧化碳
    • 7.10 氮循环
    • 7.11 磷和硫的循环
    • 7.12 中国陆地生态系统的碳循环(上)
    • 7.13 中国陆地生态系统的碳循环(下)
    • 7.14 大气中的磷化氢及其来源
    • 7.15 生物质燃烧释放的含碳痕量气体-中国案例
    • 7.16 城市生态系统的元素循环:天津北仓的案例
    • 7.17 元素循环与可持续发展
  • 8 植被气候分类系统
    • 8.1 植被气候分类系统概述
    • 8.2 简单指标的植被气候分类系统
    • 8.3 综合指标的植被气候分类系统
    • 8.4 植被气候分类模型和方案
  • 9 陆地植被的遥感分析
    • 9.1 遥感发展简史
    • 9.2 遥感技术原理
    • 9.3 归一化植被指数
    • 9.4 遥感技术的应用
    • 9.5 遥感技术的应用特点
    • 9.6 陆地植被的遥感分析
    • 9.7 自然资源管理及动态监测(上)
    • 9.8 自然资源管理及动态监测(下)
  • 10 陆地植被第一性生产力及其地理分布
    • 10.1 植被的第一性生产力
    • 10.2 植被生产力的研究与发展
    • 10.3 植被生产力的测定方法
    • 10.4 估算陆地古植被生产力及其时空分布格局
    • 10.5 现有陆地植被生产力及其分布的预测
    • 10.6 预测未来陆地植被生产力及其分布
  • 11 古气候变化与生态响应
    • 11.1 晚冰期以来的气候变化
    • 11.2 重要的气候变化事件及其生态响应
    • 11.3 有关古气候变化的生态响应问题
    • 11.4 古生态记录对于未来全球变化的意义
  • 12 气候变化的适应对策
    • 12.1 气候变化的适应对策
  • 13 阅读
    • 13.1 阅读
水污染、植被破坏与物种灭绝
  • 1 视频
  • 2 章节测验


水污染、植被破坏与物种灭绝


全球水资源分布


我国的水资源状况

 我国淡水资源总量列世界第四,但人均拥有量2300,列世界100多位,为世界人均水平的1/4。

 2002年《新华日报》:我国每年的污水排放总量高达620亿吨,相当于每年每人排放40多吨,其中大部分未经处理直接排入江河湖泊。对河段的监测结果表明,水质在四类以下(只能作为农业用水)的水体已经占到40%以上。其中,松辽河,黄河,海河以及淮河这几个流域的水污染最为严重。在调查评价的163座湖泊水库中,有1/4受到不同程度的污染,一半以上的近海海域受到了污染。

 由于水资源严重短缺、生态退化、水污染等原因,我国已有100多个城市严重缺水。

 地球淡水资源严重不足。每年各国工业用水超过600,而灌溉农田用水多达3000-4000,受化肥和有毒物质污染的水不少于上述水量总和的1/3。全球每年2.5万人死于水污染造成的疾病。全球人口中,12亿人缺乏卫生安全的饮用水。








 海洋占地球面积71%,全世界每年向海里倾倒的垃圾多达200× 吨(包括塑料制品、生活垃圾、工业废料、放射性物品),每年倒入海洋的石油和污染物分别达到3.2×吨和6.5×吨。海洋污染使沿海居民发生肝炎、霍乱病例增多,鱼虾和海洋生物大量死亡。







历史上,森林和林地曾占陆地面积1/3以上,但过去l万年以来,因人类砍伐和火灾使地球森林面积缩小了1/3。最近20年内全球每年砍伐森林20× 。欧洲的原始森林几乎完全消失。全球热带雨林仅有原来的1/2。水土流失、土地沙漠化以及水旱灾害与此有很大关系。


 据统计,地球上每天有约75种生物灭绝,每小时有3个物种灭绝。现有物种为1000万种左右,到21世纪初可能消失的物种为100万种。有证据表明,地球30一70%的植物在今后100年内将不复存在,20世纪末处于灭绝边缘的哺乳动物有406种,鸟类593种,爬行动物209种,鱼类242种。生物种大灭绝的后果将给人类带来致命的威胁。

 有科学家认为,物种灭绝一直是生命进程中的一部分,但灭绝速度如此之快令人担忧。

 二十世纪以来,数以百计的动物从地球上永远地消失了!它们曾经无忧无虑地生活在这个星球上,维系着自然界生与死的平衡。自命为智慧的人类制造出了武器,杀戮开始了,灭绝开始了…

 今天的捕杀已不再是为了生存,更不知何时能够停止,当地球上只剩下人类自己的时候,不知他们的枪口还能对准谁?自然界的惩罚,人类能够抵御吗?