目录

  • 1 绪论
    • 1.1 课程主要内容概述
    • 1.2 全球变化研究的兴起
    • 1.3 地球气体成分的变化
    • 1.4 温室效应与土地退化
    • 1.5 水污染、植被破坏与物种灭绝
    • 1.6 海平面上升、垃圾危害与人口增长
  • 2 地球系统与全球变化
    • 2.1 地球表层系统
    • 2.2 Gaia(盖亚) 假说与新地球观
    • 2.3 全球生命系统对物质循环的调控
    • 2.4 全球变化的科学内涵
    • 2.5 全球变化研究的主要内容及意义
    • 2.6 主要的全球变化-大气成分变化(上)
    • 2.7 主要的全球变化-大气成分变化(下)
    • 2.8 主要的全球变化-土地利用和土地覆盖变化
    • 2.9 主要的全球变化-全球气候变化(上)
    • 2.10 主要的全球变化-全球气候变化(下)
    • 2.11 主要的全球变化-人口增长、生物多样性变化、荒漠化
    • 2.12 当代气候变化的主要观点(上)
    • 2.13 当代气候变化的主要观点(下)
    • 2.14 气候变化的诱因——自然因素
    • 2.15 气候变化的诱因——人为因素
    • 2.16 当代气候变化的特点及后果
    • 2.17 气候变化问题的非主流思考
  • 3 全球变化与植物生理生态反应
    • 3.1 生态学概论
    • 3.2 植物生理生态学实验 (上)
    • 3.3 植物生理生态学实验 (下)
    • 3.4 大气CO2浓度升高与植物的生理反应(上)
    • 3.5 大气CO2浓度升高与植物的生理反应 (下)
    • 3.6 水热和营养环境改变下植物对CO2浓度的响应
    • 3.7 辐射环境变化及植物的生理生态反应
  • 4 生物入侵与全球变化
    • 4.1 生物入侵基本概念
    • 4.2 生物入侵的模式及原因
    • 4.3 生物入侵的理论假说
    • 4.4 生物入侵效应和规模
    • 4.5 生物入侵的后果
    • 4.6 入侵生物学的研究动态
  • 5 陆地生态系统与全球变化的相互作用
    • 5.1 模拟实验
    • 5.2 定位观测和台站网络
    • 5.3 样带研究
    • 5.4 模型模拟
    • 5.5 全球变化对生态系统功能、组成及结构的影响
    • 5.6 陆地生态系统对全球变化的反馈作用
  • 6 水生生态系统与全球变化的相互作用
    • 6.1 水环境的性质
    • 6.2 水体富营养化
    • 6.3 气候变化和臭氧层破坏
    • 6.4 温度变化及其影响
    • 6.5 水位和水量变化及其影响
    • 6.6 营养成分和pH值变化及其影响
    • 6.7 辐射和气体溶解度的变化及其影响
    • 6.8 水生生态系统对全球变化的反馈
  • 7 生物地球化学循环
    • 7.1 生物地球化学循环的研究特点
    • 7.2 大气圈
    • 7.3 水圈
    • 7.4 岩石圈
    • 7.5 生物圈
    • 7.6 CO2循环及相关过程 (上)
    • 7.7 CO2循环及相关过程(中)
    • 7.8 CO2循环及相关过程(下)
    • 7.9 甲烷和一氧化碳
    • 7.10 氮循环
    • 7.11 磷和硫的循环
    • 7.12 中国陆地生态系统的碳循环(上)
    • 7.13 中国陆地生态系统的碳循环(下)
    • 7.14 大气中的磷化氢及其来源
    • 7.15 生物质燃烧释放的含碳痕量气体-中国案例
    • 7.16 城市生态系统的元素循环:天津北仓的案例
    • 7.17 元素循环与可持续发展
  • 8 植被气候分类系统
    • 8.1 植被气候分类系统概述
    • 8.2 简单指标的植被气候分类系统
    • 8.3 综合指标的植被气候分类系统
    • 8.4 植被气候分类模型和方案
  • 9 陆地植被的遥感分析
    • 9.1 遥感发展简史
    • 9.2 遥感技术原理
    • 9.3 归一化植被指数
    • 9.4 遥感技术的应用
    • 9.5 遥感技术的应用特点
    • 9.6 陆地植被的遥感分析
    • 9.7 自然资源管理及动态监测(上)
    • 9.8 自然资源管理及动态监测(下)
  • 10 陆地植被第一性生产力及其地理分布
    • 10.1 植被的第一性生产力
    • 10.2 植被生产力的研究与发展
    • 10.3 植被生产力的测定方法
    • 10.4 估算陆地古植被生产力及其时空分布格局
    • 10.5 现有陆地植被生产力及其分布的预测
    • 10.6 预测未来陆地植被生产力及其分布
  • 11 古气候变化与生态响应
    • 11.1 晚冰期以来的气候变化
    • 11.2 重要的气候变化事件及其生态响应
    • 11.3 有关古气候变化的生态响应问题
    • 11.4 古生态记录对于未来全球变化的意义
  • 12 气候变化的适应对策
    • 12.1 气候变化的适应对策
  • 13 阅读
    • 13.1 阅读
水体富营养化
  • 1 视频
  • 2 章节测验


水体富营养化

在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,导致鱼类及其他生物大量死亡的现象

近30-40年里,海洋里的氮含量增加了2-3倍,磷的增加也非常明显  


营养物质的来源

在环境未受人类影响之前,自然界中的营养盐收支经长期的演替总体上处于一种相对平衡状态。

现在,人类每年排放的工业废水及生活污水总量高达2亿多吨,除了一小部分残留于江、河、湖泊,其余的最终都汇入海洋。

排到大气里的废气(包括温室气体在内)通过降雨、降雪和空气对流等多种渠道,最终也大多汇入海洋。

有机垃圾、家畜和家禽粪便以及农施化肥的使用,最终导致水体富营养化。

氮、磷在近海水域的大量增加,大幅度地提高了近海水体中N:Si 及P:Si的比率,使海洋生态系统从需要硅的硅藻主导群落向不需要硅的鞭毛藻、蓝藻和定鞭金藻等主导群落转移。

机理

在地表淡水系统中,磷酸盐通常是植物生长的限制因素,而在海水系统中往往是氨氮和硝酸盐限制植物的生长以及总的生产量。导致富营养化的物质,往往是这些水系统中含量有限的营养物质,例如,在正常的淡水系统中磷含量通常是有限的,因此增加磷酸盐会导致植物的过度生长,而在海水系统中磷是不缺的,而氮含量却是有限的,因而含氮污染物加入就会消除这一限制因素,从而出现植物的过度生长。生活污水和化肥、食品等工业的废水以及农田排水都含有大量的氮、磷及其他无机盐类。天然水体接纳这些废水后,水中营养物质增多,促使自养型生物旺盛生长,特别是蓝藻和红藻的个体数量迅速增加,而其他藻类的种类则逐渐减少。水体中的藻类本来以硅藻和绿藻为主,蓝藻的大量出现是富营养化的征兆,随着富营养化的发展,最后变为以蓝藻为主。藻类繁殖迅速,生长周期短。藻类及其他浮游生物死亡后被需氧微生物分解,不断消耗水中的溶解氧,或被厌氧微生物分解,不断产生硫化氢等气体,从两个方面使水质恶化,造成鱼类和其他水生生物大量死亡。藻类及其他浮游生物残体在腐烂过程中,又把大量的氮、磷等营养物质释放入水中,供新的一代藻类等生物利用。因此,富营养化了的水体,即使切断外界营养物质的来源,水体也很难自净和恢复到正常状态。

危害

富营养化会影响水体的水质,会造成水的透明度降低,使得阳光难以穿透水层,从而影响水中植物的光合作用,可能造成溶解氧的过饱和状态。溶解氧的过饱和以及水中溶解氧少,都对水生动物有害,造成鱼类大量死亡。同时,因为水体富营养化,水体表面生长着以蓝藻、绿藻为优势种的大量水藻,形成一层“绿色浮渣”,致使底层堆积的有机物质在厌氧条件分解产生的有害气体和一些浮游生物产生的生物毒素也会伤害鱼类。因富营养化水中含有硝酸盐和亚硝酸盐,人畜长期饮用这些物质含量超过一定标准的水,也会中毒致病。

在形成“绿色浮渣”后,水下的藻类会因得不到阳光照射而呼吸水内氧气,不能进行光合作用。水内氧气逐渐减少,水内生物也会因氧气不足而死亡。死去的藻类和生物又会在水内进行氧化作用,这时水体也会变得很臭,水资源也会被污染的不可再用。