目录

  • 1 绪论
    • 1.1 课程主要内容概述
    • 1.2 全球变化研究的兴起
    • 1.3 地球气体成分的变化
    • 1.4 温室效应与土地退化
    • 1.5 水污染、植被破坏与物种灭绝
    • 1.6 海平面上升、垃圾危害与人口增长
  • 2 地球系统与全球变化
    • 2.1 地球表层系统
    • 2.2 Gaia(盖亚) 假说与新地球观
    • 2.3 全球生命系统对物质循环的调控
    • 2.4 全球变化的科学内涵
    • 2.5 全球变化研究的主要内容及意义
    • 2.6 主要的全球变化-大气成分变化(上)
    • 2.7 主要的全球变化-大气成分变化(下)
    • 2.8 主要的全球变化-土地利用和土地覆盖变化
    • 2.9 主要的全球变化-全球气候变化(上)
    • 2.10 主要的全球变化-全球气候变化(下)
    • 2.11 主要的全球变化-人口增长、生物多样性变化、荒漠化
    • 2.12 当代气候变化的主要观点(上)
    • 2.13 当代气候变化的主要观点(下)
    • 2.14 气候变化的诱因——自然因素
    • 2.15 气候变化的诱因——人为因素
    • 2.16 当代气候变化的特点及后果
    • 2.17 气候变化问题的非主流思考
  • 3 全球变化与植物生理生态反应
    • 3.1 生态学概论
    • 3.2 植物生理生态学实验 (上)
    • 3.3 植物生理生态学实验 (下)
    • 3.4 大气CO2浓度升高与植物的生理反应(上)
    • 3.5 大气CO2浓度升高与植物的生理反应 (下)
    • 3.6 水热和营养环境改变下植物对CO2浓度的响应
    • 3.7 辐射环境变化及植物的生理生态反应
  • 4 生物入侵与全球变化
    • 4.1 生物入侵基本概念
    • 4.2 生物入侵的模式及原因
    • 4.3 生物入侵的理论假说
    • 4.4 生物入侵效应和规模
    • 4.5 生物入侵的后果
    • 4.6 入侵生物学的研究动态
  • 5 陆地生态系统与全球变化的相互作用
    • 5.1 模拟实验
    • 5.2 定位观测和台站网络
    • 5.3 样带研究
    • 5.4 模型模拟
    • 5.5 全球变化对生态系统功能、组成及结构的影响
    • 5.6 陆地生态系统对全球变化的反馈作用
  • 6 水生生态系统与全球变化的相互作用
    • 6.1 水环境的性质
    • 6.2 水体富营养化
    • 6.3 气候变化和臭氧层破坏
    • 6.4 温度变化及其影响
    • 6.5 水位和水量变化及其影响
    • 6.6 营养成分和pH值变化及其影响
    • 6.7 辐射和气体溶解度的变化及其影响
    • 6.8 水生生态系统对全球变化的反馈
  • 7 生物地球化学循环
    • 7.1 生物地球化学循环的研究特点
    • 7.2 大气圈
    • 7.3 水圈
    • 7.4 岩石圈
    • 7.5 生物圈
    • 7.6 CO2循环及相关过程 (上)
    • 7.7 CO2循环及相关过程(中)
    • 7.8 CO2循环及相关过程(下)
    • 7.9 甲烷和一氧化碳
    • 7.10 氮循环
    • 7.11 磷和硫的循环
    • 7.12 中国陆地生态系统的碳循环(上)
    • 7.13 中国陆地生态系统的碳循环(下)
    • 7.14 大气中的磷化氢及其来源
    • 7.15 生物质燃烧释放的含碳痕量气体-中国案例
    • 7.16 城市生态系统的元素循环:天津北仓的案例
    • 7.17 元素循环与可持续发展
  • 8 植被气候分类系统
    • 8.1 植被气候分类系统概述
    • 8.2 简单指标的植被气候分类系统
    • 8.3 综合指标的植被气候分类系统
    • 8.4 植被气候分类模型和方案
  • 9 陆地植被的遥感分析
    • 9.1 遥感发展简史
    • 9.2 遥感技术原理
    • 9.3 归一化植被指数
    • 9.4 遥感技术的应用
    • 9.5 遥感技术的应用特点
    • 9.6 陆地植被的遥感分析
    • 9.7 自然资源管理及动态监测(上)
    • 9.8 自然资源管理及动态监测(下)
  • 10 陆地植被第一性生产力及其地理分布
    • 10.1 植被的第一性生产力
    • 10.2 植被生产力的研究与发展
    • 10.3 植被生产力的测定方法
    • 10.4 估算陆地古植被生产力及其时空分布格局
    • 10.5 现有陆地植被生产力及其分布的预测
    • 10.6 预测未来陆地植被生产力及其分布
  • 11 古气候变化与生态响应
    • 11.1 晚冰期以来的气候变化
    • 11.2 重要的气候变化事件及其生态响应
    • 11.3 有关古气候变化的生态响应问题
    • 11.4 古生态记录对于未来全球变化的意义
  • 12 气候变化的适应对策
    • 12.1 气候变化的适应对策
  • 13 阅读
    • 13.1 阅读
城市生态系统的元素循环:天津北仓的案例
  • 1 视频
  • 2 章节测验

城市生态系统的元素循环:天津北仓的案例 

为了深入研究城市中的元素循环(包括郊区农业), 选择天津北郊区北仓,利用该区1986至1987年环境评价的数据,对其元素循环进行分析。北仓不仅是直辖市的一个重要组成部分,也代表海河流域京、津、唐、石等大城市周围的诸多小城镇的元素流的情况。 


1、土地利用情况 

定位观测小区面积约为37

该小区土地利用情况如下:

河流、公路和铁路用地总计6.2

工厂与仓库占7.5

居民区(包括机关、商店、学校、医院等)占4.3

农田15.3 ,绿地2.2

荒地和空闲地1.7 (见表6.40)

北仓土地利用情况 

定位观测小区面积约为37

2、城市生态系统的组成部分 

北仓生态系统包括居民区、工业区、农业区、绿地和水域。

全小区共有人口81233人,其中农村人口47515人,城市居民33718人。该区住宅面积共计825750

能源方面:该区民用炊事用燃料已改为煤气,但工业燃料和居民采暖仍以煤为主。全区工业用和民用煤年耗量为50.8×t/a。燃油比例小,企业用油仅2.69×t/a。

工业方面:有大中型企业45家和乡镇企业17家。分属化工、机械、电器、木材、医药、建材、食品、轻纺等。其中主要污染型企业有15家,包括几家农药、制药、化工、化染厂,还有油漆厂、重型机械厂、沥青厂、水泥厂、炭黑厂和木材厂。

农业方面:主要是种植业。所种粮食仅供农民口粮2523 t/a;大量种植的是蔬菜计83674 t/a,为城市居民提供副食品。

水域:有永定新河、引滦水系(指新引河与北运河)及丰产河。3个河系功能不同。永定新河是人工开挖的泄洪河道,在本区内长度为7.5 km,宽平均150 m。