现代生物技术

夏九成

目录

  • 1 一 单元 绪论
    • 1.1 课件
  • 2 二单元 基因工程
    • 2.1 课件
  • 3 三单元 蛋白质工程
    • 3.1 课件
  • 4 四单元 细胞工程
    • 4.1 课件
  • 5 五单元,发酵工程
    • 5.1 课件
  • 6 六单元,酶工程
    • 6.1 课件
  • 7 七单元,现代生物技术的应用
    • 7.1 课件
  • 8 生物技术的创新与风险
    • 8.1 课件
  • 9 绪论
    • 9.1 课程整合的设置
    • 9.2 教学理念
    • 9.3 PBL
  • 10 蛋白质的结构和功能
    • 10.1 前置问题及学习目标
    • 10.2 蛋白质的分子组成
    • 10.3 蛋白质的分子结构
    • 10.4 蛋白质结构与功能的关系
    • 10.5 蛋白质的理化性质及应用
    • 10.6 必交作业
    • 10.7 氨基酸是蛋白质的基本组成单位
    • 10.8 氨基酸的基本结构
    • 10.9 氨基酸的分类
    • 10.10 氨基酸的理化性质
    • 10.11 蛋白质是氨基酸通过肽键相连而成的生物大分子
    • 10.12 氨基酸的排列顺序是蛋白质的一级结构
    • 10.13 多肽链主链的局部空间构象是蛋白质的二级结构
    • 10.14 肽单元
    • 10.15 主要二级结构形式
    • 10.16 超二级结构-模体
    • 10.17 侧链R基团的相互作用形成蛋白质的三级结构
    • 10.18 亚基缔合成分子—蛋白质的四级结构
    • 10.19 蛋白质一级结构是空间构象和功能的基础
    • 10.20 蛋白质的功能依赖其特定的空间构象
    • 10.21 蛋白质具有和氨基酸相同的和自身特殊的理化性质
    • 10.22 利用蛋白质的性质分离纯化蛋白质
  • 11 核酸的结构与功能
    • 11.1 前置问题及学习目标
    • 11.2 核酸的化学组成和一级结构
    • 11.3 DNA的结构和功能
    • 11.4 RNA的结构与功能
    • 11.5 核酸的理化性质
    • 11.6 必交作业
    • 11.7 核酸分类及基本组成单位—核苷酸
    • 11.8 核酸的一级结构是核苷酸的排列顺序
    • 11.9 DNA的二级结构是双螺旋结构
    • 11.10 DNA的三级结构是超螺旋结构
    • 11.11 mRNA从DNA转录遗传信息指导蛋白质合成
    • 11.12 tRNA是蛋白质合成的接合器分子
    • 11.13 rRNA参与蛋白质的合成场所-核糖体的组成
    • 11.14 细胞内其它小分子RNA参与体内重要过程
    • 11.15 核酸的酸性和紫外吸收特性
    • 11.16 核酸的变性和分子杂交技术
  • 12 酶与辅酶
    • 12.1 前置问题及学习目标
    • 12.2 酶的分子结构
    • 12.3 酶的分类与命名
    • 12.4 酶的反应特点与机制
    • 12.5 酶促反应的动力学
    • 12.6 酶活性的调节
    • 12.7 必交作业
    • 12.8 酶的分子组成
    • 12.9 酶的空间结构
    • 12.10 酶促反应的特点
    • 12.11 酶促反应的机制
    • 12.12 底物浓度对反应速度的影响
    • 12.13 酶浓度对反应速度的影响
    • 12.14 温度对反应速度的影响
    • 12.15 pH对反应速度的影响
    • 12.16 抑制剂对反应速度的影响
    • 12.17 激活剂对酶促反应速度的影响
    • 12.18 酶原与酶原激活
    • 12.19 酶的变构调节
    • 12.20 酶的共价修饰调节
    • 12.21 细胞外基质
    • 12.22 酶含量的调节
    • 12.23 同工酶
  • 13 糖复合物
    • 13.1 前置问题及学习目标
    • 13.2 糖蛋白
    • 13.3 蛋白聚糖
    • 13.4 糖脂
    • 13.5 糖蛋白的结构
    • 13.6 糖蛋白的功能
    • 13.7 蛋白聚糖的结构
    • 13.8 蛋白聚糖的功能
  • 14 糖代谢
    • 14.1 前置问题及学习目标
    • 14.2 代谢概述
    • 14.3 糖代谢
    • 14.4 必交作业
    • 14.5 糖代谢概述
    • 14.6 糖的生理功能
    • 14.7 糖的消化
    • 14.8 糖的吸收
    • 14.9 糖的转运
    • 14.10 糖的无氧酵解
    • 14.11 糖酵解途径
    • 14.12 乳酸生成
    • 14.13 糖酵解能量生成
    • 14.14 糖酵解的调节
    • 14.15 糖酵解的生理意义和临床联系
    • 14.16 如何学习代谢?
    • 14.17 糖的有氧氧化
    • 14.18 反应过程-丙酮酸氧化
    • 14.19 反应过程-柠檬酸循环1
    • 14.20 柠檬酸循环2--三羧酸循环总结
    • 14.21 柠檬酸循环3--有氧氧化的调节
    • 14.22 糖有氧氧化的生理意义
    • 14.23 糖酵解与有氧氧化的协调
    • 14.24 磷酸戊糖途径
    • 14.25 磷酸戊糖途径反应过程
    • 14.26 磷酸戊糖途径生理意义
    • 14.27 糖醛酸代谢
    • 14.28 糖异生
    • 14.29 糖异生代谢途径
    • 14.30 糖异生原料
    • 14.31 糖异生调节
    • 14.32 糖异生生理意义
    • 14.33 糖原合成与分解
    • 14.34 反应过程、分支酶作用及合成起始
    • 14.35 反应过程及脱枝酶
    • 14.36 变构、化学修饰和临床的相关性
    • 14.37 血糖与血糖调节
  • 15 生物氧化
    • 15.1 前置问题及学习目标
    • 15.2 生物氧化的概述
    • 15.3 线粒体氧化体系
    • 15.4 其它氧化体系
    • 15.5 必交作业
    • 15.6 呼吸链
    • 15.7 呼吸链的组成成分
    • 15.8 呼吸链的排列次序
    • 15.9 氧化磷酸化
    • 15.10 氧化磷酸化的偶联数目与偶联部位
    • 15.11 氧化磷酸化的偶联机制
    • 15.12 ATP合酶
    • 15.13 氧化磷酸化的影响因素
    • 15.14 ATP的转运与储存
    • 15.15 胞液NADH的氧化
  • 16 脂类代谢
    • 16.1 前置问题及学习目标
    • 16.2 脂类概述
    • 16.3 脂肪的分解代谢
    • 16.4 脂肪的合成代谢
    • 16.5 磷脂的代谢
    • 16.6 胆固醇代谢
    • 16.7 血浆脂蛋白代谢
    • 16.8 必交作业
    • 16.9 脂类的一般概念
    • 16.10 脂类的分布与生理功能
    • 16.11 脂类的消化和吸收
    • 16.12 脂肪动员与激素敏感脂肪酶
    • 16.13 脂肪酸的氧化分解
    • 16.14 酮体的生成与利用
    • 16.15 甘油的氧化分解
    • 16.16 脂肪酸的合成部位与原料
    • 16.17 丙二酰CoA的合成
    • 16.18 软脂酸的合成
    • 16.19 脂肪酸链的延长
    • 16.20 不饱和脂肪酸的合成
    • 16.21 多不饱和脂肪酸的衍生物
    • 16.22 3-磷酸甘油的合成
    • 16.23 脂肪的合成
    • 16.24 磷脂的分类、结构与功能
    • 16.25 甘油磷脂的代谢
    • 16.26 鞘磷脂的代谢
    • 16.27 胆固醇的合成
    • 16.28 胆固醇在体内的转变与排泄
    • 16.29 血脂
    • 16.30 血浆脂蛋白的分类、组成及结构
    • 16.31 血浆脂蛋白代谢
  • 17 氨基酸代谢
    • 17.1 前置问题及学习目标
    • 17.2 氨基酸的生理功能与营养价值
    • 17.3 体内氨基酸的来源
    • 17.4 氨基酸的分解代谢
    • 17.5 氨基酸的分类代谢
    • 17.6 必交作业
    • 17.7 蛋白质的消化、吸收和腐败
    • 17.8 体内氨基酸的降解
    • 17.9 非必需氨基酸的合成
    • 17.10 氨基酸代谢池
    • 17.11 氨基酸的脱氨基作用
    • 17.12 转氨基作用
    • 17.13 氧化脱氨
    • 17.14 联合脱氨
    • 17.15 其他脱氨方式
    • 17.16 氨的代谢
    • 17.17 氨的来源与去路
    • 17.18 氨的转运
    • 17.19 尿素的合成
    • 17.20 α-酮酸的代谢
    • 17.21 氨基酸的脱羧基作用
    • 17.22 一碳单位的代谢
    • 17.23 含硫氨基酸的代谢
    • 17.24 肌酸的代谢
    • 17.25 芳香族氨基酸的代谢
    • 17.26 支链氨基酸的代谢
  • 18 核苷酸代谢
    • 18.1 前置问题及学习目标
    • 18.2 嘌呤核苷酸代谢
    • 18.3 嘧啶核苷酸代谢
    • 18.4 脱氧核糖核苷酸的合成
    • 18.5 嘌呤核苷酸的合成代谢
    • 18.6 嘌呤核苷酸的从头合成途径
    • 18.7 嘌呤核苷酸的补救合成途径
    • 18.8 嘌呤核苷酸的分解代谢
    • 18.9 核苷酸的抗代谢物
  • 19 血液生化
    • 19.1 前置问题及学习目标
    • 19.2 血液化学成分
    • 19.3 红细胞代谢
    • 19.4 血红素合成原料
    • 19.5 铁卟啉结构和血红素生物合成
    • 19.6 铁的来源
    • 19.7 成熟RBC的代谢通路
    • 19.8 糖酵解
    • 19.9 2,3-BPG支路
    • 19.10 磷酸戊糖途径
  • 20 与肝胆生化
    • 20.1 前置问题及学习目标
    • 20.2 肝脏解剖及生化功能
    • 20.3 生物转化
    • 20.4 胆汁及胆汁酸代谢
    • 20.5 胆色素代谢及黄疸
    • 20.6 解剖特点
    • 20.7 肝脏物质代谢中心
    • 20.8 糖代谢
    • 20.9 肝脏的脂代谢
    • 20.10 肝脏的蛋白质代谢
    • 20.11 肝脏的维生素代谢
    • 20.12 肝脏的激素代谢
    • 20.13 概念、意义
    • 20.14 生物转化反应
    • 20.15 第一相反应
    • 20.16 第二相反应
    • 20.17 生物转化特点
    • 20.18 影响生物转化的因素
    • 20.19 胆汁概述
    • 20.20 胆汁酸分类
    • 20.21 胆汁酸代谢及肠肝循环
    • 20.22 胆红素的合成
    • 20.23 胆红素在血液中的运输
    • 20.24 胆红素在肝细胞摄取和转化
    • 20.25 胆红素在肠道排出
    • 20.26 胆红素和黄疸
  • 21 DNA的生物合成
    • 21.1 前置问题及学习目标
    • 21.2 DNA复制—导言
    • 21.3 DNA复制原则
    • 21.4 DNA复制过程所需酶
    • 21.5 DNA复制过程起始,延长和终止
    • 21.6 逆转录
    • 21.7 DNA损伤与修复--损伤
    • 21.8 DNA损伤与修复--修复
    • 21.9 必交作业
    • 21.10 半保留复制
    • 21.11 双向复制
    • 21.12 半不连续复制
    • 21.13 解螺旋酶
    • 21.14 拓扑异构酶
    • 21.15 单链DNA结合蛋白
    • 21.16 引物酶
    • 21.17 聚合酶
    • 21.18 连接酶
  • 22 RNA的生物合成
    • 22.1 前置问题及学习目标
    • 22.2 概述
    • 22.3 RNA 转录体系
    • 22.4 RNA 生物合成过程
    • 22.5 RNA 转录后加工
    • 22.6 RNA 复制
    • 22.7 必交作业
    • 22.8 RNA聚合酶
    • 22.9 DNA 转录模板
    • 22.10 真核和原核的启动子特点和功能
    • 22.11 终止子和增强子
    • 22.12 原核生物RNA转录
    • 22.13 真核生物RNA转录
    • 22.14 原核细胞RNA转录后加工
    • 22.15 真核细胞RNA转录后加工
    • 22.16 rRNA和tRNA的转录后加工
    • 22.17 mRNA的转录后加工
  • 23 蛋白质的翻译
    • 23.1 前置问题及学习目标
    • 23.2 概述
    • 23.3 蛋白质生物合成体系
    • 23.4 蛋白质生物合成过程
    • 23.5 蛋白质生物合成后加工(PTM)
    • 23.6 蛋白质翻译的抑制
    • 23.7 必交作业
    • 23.8 遗传密码载体-mRNA
    • 23.9 氨基酸载体—tRNA/adaptor
    • 23.10 蛋白质合成场所: 核糖体(Ribosomes)
    • 23.11 氨基酸的活化
    • 23.12 翻译的起始
    • 23.13 翻译的延长
    • 23.14 翻译的终止
    • 23.15 总结蛋白质生物合成过程
    • 23.16 真核生物蛋白质生物合成的主要区别
    • 23.17 总结参与蛋白质翻译合成的因子
    • 23.18 理解遗传信息传递在科研的应用
    • 23.19 一级结构加工
    • 23.20 高级结构加工
    • 23.21 蛋白质折叠异常所导致的疾病
    • 23.22 蛋白质的靶向输送(protein targeting)
    • 23.23 抗生素类
    • 23.24 干扰蛋白质生物合成的活性物质
柠檬酸循环2--三羧酸循环总结



1.  三羧酸循环的反应过程

三羧酸循环在线粒体中进行

共需要 8 步酶促反应

反应生成 9 种中间物,与糖酵解不同,这些中间物都是非磷酸化的



(1)  柠檬酸的生成

柠檬酸合酶(citrate synthase)催化乙酰-CoA (acetyl-CoA)草酰乙酸(oxaloacetate)缩合,生成柠檬酸(citrate)

变构酶,对草酰乙酸Km低,10mmol/L

生理条件下不可逆



(2)  异柠檬酸的生成

顺乌头酸酶(aconitase)催化柠檬酸脱水为顺乌头酸(cis-aconitate),而后加水生成异柠檬酸(isocitrate)

生理条件下可逆


氟乙酸的毒性

氟乙酸是三羧酸循环抑制剂

    ·小鼠的半致死剂量为 0.2 mg/Kg,10 倍于氰化钾

氟乙酸在体内转变为氟乙酰-CoA,通过柠檬酸合酶与草酰乙酸缩合为氟柠檬酸

氟柠檬酸顺乌头酸酶产生强烈的毒性作用



(3)  异柠檬酸的脱氢

异柠檬酸脱氢酶(isocitrate dehydrogenase)催化异柠檬酸脱氢,生成α-酮戊二酸(α-Ketoglutarate )

通过自发的脱羧生成第一个 CO2 分子

    ·来自草酰乙酸, 不是来自乙酰-CoA

生成 1 分子 NADH

脱羧反应,不可逆

在高等生物,细胞中有两种异柠檬酸脱氢酶

  · 以 NAD+为辅酶,存在于线粒体,是三羧酸循环主要的酶

  · 以 NADP+为辅酶,存在于线粒体和胞液

ADP 是异柠檬酸脱氢酶的变构激活剂

NADHATP 对酶具有变构抑制作用


(4) α-酮戊二酸的脱氢

α-酮戊二酸脱氢酶复合体催化 α-酮戊二酸脱氢脱羧,生成琥珀酰-CoA(succinyl-CoA)

通过脱羧生成第二个 CO2 分子,以及 NADH

脱羧反应,不可逆


α-ketoglutarate dehydrogenase complex

氧化戊二酸脱氢酶(oxoglutarate dehydrogenase)

α-酮戊二酸脱氢酶复合体具有和丙酮酸脱氢酶复合体完全相同的反应机制

ATP、NADH 琥珀酰-CoA 对酶有变构抑制作用

与丙酮酸脱氢酶复合体不同, α-酮戊二酸脱氢酶复合体不接受磷酸化与去磷酸化的调节

砷化物的神经毒性:结合硫辛酸的巯基,抑制复合体的活性


(5)  琥珀酰-CoA 转化为琥珀酸

琥珀酰-CoA合成酶(succinyl-CoA synthetase)催化琥珀酰-CoA 转化为琥珀酸(succinate),同时合成 GTP 

高能硫酯键水解,驱动 GTP 合成, 反应可逆


补充资料:合成酶与合酶

琥珀酰-CoA合成酶(succinyl-CoA synthetase)也称为琥珀酸硫激酶(succinic thiokinase)


合酶(synthase):催化缩合,不需要 ATP,属于裂合酶

合成酶(synthetase):催化缩合,需要 ATP,属于连接酶

激酶(kinase):属于转移酶


连接酶(ligase):琥珀酰-CoA 合成酶、丙酮酸羧化酶、

                                     DNA 连接酶

裂合酶(lyases):柠檬酸合酶、醛缩酶、丙酮酸脱氢酶


(6)  琥珀酸脱氢生成延胡索酸

琥珀酸脱氢酶(succinate dehydrogenase)催化琥珀酸脱氢,生成延胡索酸(fumarate)

反应的能量生成接近于零,可逆

琥珀酸脱氢酶位于线粒体内膜,含有铁硫中心和共价结合的 FAD


FAD 是脱氢酶的辅基

FAD 参与烷基脱氢,NAD+则参与羟基等的脱氢

FADH2 氧化可生成 2(1.5) 个 ATP,NADH 氧化则可以生成 3(2.5) 个 ATP



(7)  延胡索酸水化成苹果酸

延胡索酸酶(fumarase)催化延胡索酸水化,生成苹果酸(malate)

酶具有高度的立体专一性,水分子的 OH 基团只加到双键的一侧,生成 L-苹果酸,反应可逆


(8) 苹果酸脱氢生成草酰乙酸

苹果酸脱氢酶(malate dehydrogenase)催化苹果酸脱氢,生成草酰乙酸(oxaloacetate)

反应耗能 ,依靠草酰乙酸的消耗驱动反应进行

草酰乙酸结合新的乙酰-CoA,再进入三羧酸循环



2.  三羧酸循环的总结

两次脱羧生成两分子 CO2

四次脱氢,生成三分子 NADH 和一分子 FADH2

通过底物水平磷酸化,生成 GTP


三羧酸循环反应总方程式



通过氧化磷酸化:

  · NADH=2.5 ATP;FADH2=1.5 ATP

乙酰-CoA 氧化分解可生成 10 ATP

  · 旧的算法为 12 ATP


三羧酸循环是开放的




填补反应(anaplerotic reactions)

丙酮酸羧化酶(pyruvate carboxylase)可以合成草酰乙酸,补充三羧酸循环中间物的消耗


生物素与羧化酶

生物素是所有羧化酶的辅基,连接于酶活性中心的 Lys-NH3

由 ATP 提供能量,催化CO2 对生物素的羧化,然后完成羧基转移