现代生物技术

夏九成

目录

  • 1 一 单元 绪论
    • 1.1 课件
  • 2 二单元 基因工程
    • 2.1 课件
  • 3 三单元 蛋白质工程
    • 3.1 课件
  • 4 四单元 细胞工程
    • 4.1 课件
  • 5 五单元,发酵工程
    • 5.1 课件
  • 6 六单元,酶工程
    • 6.1 课件
  • 7 七单元,现代生物技术的应用
    • 7.1 课件
  • 8 生物技术的创新与风险
    • 8.1 课件
  • 9 绪论
    • 9.1 课程整合的设置
    • 9.2 教学理念
    • 9.3 PBL
  • 10 蛋白质的结构和功能
    • 10.1 前置问题及学习目标
    • 10.2 蛋白质的分子组成
    • 10.3 蛋白质的分子结构
    • 10.4 蛋白质结构与功能的关系
    • 10.5 蛋白质的理化性质及应用
    • 10.6 必交作业
    • 10.7 氨基酸是蛋白质的基本组成单位
    • 10.8 氨基酸的基本结构
    • 10.9 氨基酸的分类
    • 10.10 氨基酸的理化性质
    • 10.11 蛋白质是氨基酸通过肽键相连而成的生物大分子
    • 10.12 氨基酸的排列顺序是蛋白质的一级结构
    • 10.13 多肽链主链的局部空间构象是蛋白质的二级结构
    • 10.14 肽单元
    • 10.15 主要二级结构形式
    • 10.16 超二级结构-模体
    • 10.17 侧链R基团的相互作用形成蛋白质的三级结构
    • 10.18 亚基缔合成分子—蛋白质的四级结构
    • 10.19 蛋白质一级结构是空间构象和功能的基础
    • 10.20 蛋白质的功能依赖其特定的空间构象
    • 10.21 蛋白质具有和氨基酸相同的和自身特殊的理化性质
    • 10.22 利用蛋白质的性质分离纯化蛋白质
  • 11 核酸的结构与功能
    • 11.1 前置问题及学习目标
    • 11.2 核酸的化学组成和一级结构
    • 11.3 DNA的结构和功能
    • 11.4 RNA的结构与功能
    • 11.5 核酸的理化性质
    • 11.6 必交作业
    • 11.7 核酸分类及基本组成单位—核苷酸
    • 11.8 核酸的一级结构是核苷酸的排列顺序
    • 11.9 DNA的二级结构是双螺旋结构
    • 11.10 DNA的三级结构是超螺旋结构
    • 11.11 mRNA从DNA转录遗传信息指导蛋白质合成
    • 11.12 tRNA是蛋白质合成的接合器分子
    • 11.13 rRNA参与蛋白质的合成场所-核糖体的组成
    • 11.14 细胞内其它小分子RNA参与体内重要过程
    • 11.15 核酸的酸性和紫外吸收特性
    • 11.16 核酸的变性和分子杂交技术
  • 12 酶与辅酶
    • 12.1 前置问题及学习目标
    • 12.2 酶的分子结构
    • 12.3 酶的分类与命名
    • 12.4 酶的反应特点与机制
    • 12.5 酶促反应的动力学
    • 12.6 酶活性的调节
    • 12.7 必交作业
    • 12.8 酶的分子组成
    • 12.9 酶的空间结构
    • 12.10 酶促反应的特点
    • 12.11 酶促反应的机制
    • 12.12 底物浓度对反应速度的影响
    • 12.13 酶浓度对反应速度的影响
    • 12.14 温度对反应速度的影响
    • 12.15 pH对反应速度的影响
    • 12.16 抑制剂对反应速度的影响
    • 12.17 激活剂对酶促反应速度的影响
    • 12.18 酶原与酶原激活
    • 12.19 酶的变构调节
    • 12.20 酶的共价修饰调节
    • 12.21 细胞外基质
    • 12.22 酶含量的调节
    • 12.23 同工酶
  • 13 糖复合物
    • 13.1 前置问题及学习目标
    • 13.2 糖蛋白
    • 13.3 蛋白聚糖
    • 13.4 糖脂
    • 13.5 糖蛋白的结构
    • 13.6 糖蛋白的功能
    • 13.7 蛋白聚糖的结构
    • 13.8 蛋白聚糖的功能
  • 14 糖代谢
    • 14.1 前置问题及学习目标
    • 14.2 代谢概述
    • 14.3 糖代谢
    • 14.4 必交作业
    • 14.5 糖代谢概述
    • 14.6 糖的生理功能
    • 14.7 糖的消化
    • 14.8 糖的吸收
    • 14.9 糖的转运
    • 14.10 糖的无氧酵解
    • 14.11 糖酵解途径
    • 14.12 乳酸生成
    • 14.13 糖酵解能量生成
    • 14.14 糖酵解的调节
    • 14.15 糖酵解的生理意义和临床联系
    • 14.16 如何学习代谢?
    • 14.17 糖的有氧氧化
    • 14.18 反应过程-丙酮酸氧化
    • 14.19 反应过程-柠檬酸循环1
    • 14.20 柠檬酸循环2--三羧酸循环总结
    • 14.21 柠檬酸循环3--有氧氧化的调节
    • 14.22 糖有氧氧化的生理意义
    • 14.23 糖酵解与有氧氧化的协调
    • 14.24 磷酸戊糖途径
    • 14.25 磷酸戊糖途径反应过程
    • 14.26 磷酸戊糖途径生理意义
    • 14.27 糖醛酸代谢
    • 14.28 糖异生
    • 14.29 糖异生代谢途径
    • 14.30 糖异生原料
    • 14.31 糖异生调节
    • 14.32 糖异生生理意义
    • 14.33 糖原合成与分解
    • 14.34 反应过程、分支酶作用及合成起始
    • 14.35 反应过程及脱枝酶
    • 14.36 变构、化学修饰和临床的相关性
    • 14.37 血糖与血糖调节
  • 15 生物氧化
    • 15.1 前置问题及学习目标
    • 15.2 生物氧化的概述
    • 15.3 线粒体氧化体系
    • 15.4 其它氧化体系
    • 15.5 必交作业
    • 15.6 呼吸链
    • 15.7 呼吸链的组成成分
    • 15.8 呼吸链的排列次序
    • 15.9 氧化磷酸化
    • 15.10 氧化磷酸化的偶联数目与偶联部位
    • 15.11 氧化磷酸化的偶联机制
    • 15.12 ATP合酶
    • 15.13 氧化磷酸化的影响因素
    • 15.14 ATP的转运与储存
    • 15.15 胞液NADH的氧化
  • 16 脂类代谢
    • 16.1 前置问题及学习目标
    • 16.2 脂类概述
    • 16.3 脂肪的分解代谢
    • 16.4 脂肪的合成代谢
    • 16.5 磷脂的代谢
    • 16.6 胆固醇代谢
    • 16.7 血浆脂蛋白代谢
    • 16.8 必交作业
    • 16.9 脂类的一般概念
    • 16.10 脂类的分布与生理功能
    • 16.11 脂类的消化和吸收
    • 16.12 脂肪动员与激素敏感脂肪酶
    • 16.13 脂肪酸的氧化分解
    • 16.14 酮体的生成与利用
    • 16.15 甘油的氧化分解
    • 16.16 脂肪酸的合成部位与原料
    • 16.17 丙二酰CoA的合成
    • 16.18 软脂酸的合成
    • 16.19 脂肪酸链的延长
    • 16.20 不饱和脂肪酸的合成
    • 16.21 多不饱和脂肪酸的衍生物
    • 16.22 3-磷酸甘油的合成
    • 16.23 脂肪的合成
    • 16.24 磷脂的分类、结构与功能
    • 16.25 甘油磷脂的代谢
    • 16.26 鞘磷脂的代谢
    • 16.27 胆固醇的合成
    • 16.28 胆固醇在体内的转变与排泄
    • 16.29 血脂
    • 16.30 血浆脂蛋白的分类、组成及结构
    • 16.31 血浆脂蛋白代谢
  • 17 氨基酸代谢
    • 17.1 前置问题及学习目标
    • 17.2 氨基酸的生理功能与营养价值
    • 17.3 体内氨基酸的来源
    • 17.4 氨基酸的分解代谢
    • 17.5 氨基酸的分类代谢
    • 17.6 必交作业
    • 17.7 蛋白质的消化、吸收和腐败
    • 17.8 体内氨基酸的降解
    • 17.9 非必需氨基酸的合成
    • 17.10 氨基酸代谢池
    • 17.11 氨基酸的脱氨基作用
    • 17.12 转氨基作用
    • 17.13 氧化脱氨
    • 17.14 联合脱氨
    • 17.15 其他脱氨方式
    • 17.16 氨的代谢
    • 17.17 氨的来源与去路
    • 17.18 氨的转运
    • 17.19 尿素的合成
    • 17.20 α-酮酸的代谢
    • 17.21 氨基酸的脱羧基作用
    • 17.22 一碳单位的代谢
    • 17.23 含硫氨基酸的代谢
    • 17.24 肌酸的代谢
    • 17.25 芳香族氨基酸的代谢
    • 17.26 支链氨基酸的代谢
  • 18 核苷酸代谢
    • 18.1 前置问题及学习目标
    • 18.2 嘌呤核苷酸代谢
    • 18.3 嘧啶核苷酸代谢
    • 18.4 脱氧核糖核苷酸的合成
    • 18.5 嘌呤核苷酸的合成代谢
    • 18.6 嘌呤核苷酸的从头合成途径
    • 18.7 嘌呤核苷酸的补救合成途径
    • 18.8 嘌呤核苷酸的分解代谢
    • 18.9 核苷酸的抗代谢物
  • 19 血液生化
    • 19.1 前置问题及学习目标
    • 19.2 血液化学成分
    • 19.3 红细胞代谢
    • 19.4 血红素合成原料
    • 19.5 铁卟啉结构和血红素生物合成
    • 19.6 铁的来源
    • 19.7 成熟RBC的代谢通路
    • 19.8 糖酵解
    • 19.9 2,3-BPG支路
    • 19.10 磷酸戊糖途径
  • 20 与肝胆生化
    • 20.1 前置问题及学习目标
    • 20.2 肝脏解剖及生化功能
    • 20.3 生物转化
    • 20.4 胆汁及胆汁酸代谢
    • 20.5 胆色素代谢及黄疸
    • 20.6 解剖特点
    • 20.7 肝脏物质代谢中心
    • 20.8 糖代谢
    • 20.9 肝脏的脂代谢
    • 20.10 肝脏的蛋白质代谢
    • 20.11 肝脏的维生素代谢
    • 20.12 肝脏的激素代谢
    • 20.13 概念、意义
    • 20.14 生物转化反应
    • 20.15 第一相反应
    • 20.16 第二相反应
    • 20.17 生物转化特点
    • 20.18 影响生物转化的因素
    • 20.19 胆汁概述
    • 20.20 胆汁酸分类
    • 20.21 胆汁酸代谢及肠肝循环
    • 20.22 胆红素的合成
    • 20.23 胆红素在血液中的运输
    • 20.24 胆红素在肝细胞摄取和转化
    • 20.25 胆红素在肠道排出
    • 20.26 胆红素和黄疸
  • 21 DNA的生物合成
    • 21.1 前置问题及学习目标
    • 21.2 DNA复制—导言
    • 21.3 DNA复制原则
    • 21.4 DNA复制过程所需酶
    • 21.5 DNA复制过程起始,延长和终止
    • 21.6 逆转录
    • 21.7 DNA损伤与修复--损伤
    • 21.8 DNA损伤与修复--修复
    • 21.9 必交作业
    • 21.10 半保留复制
    • 21.11 双向复制
    • 21.12 半不连续复制
    • 21.13 解螺旋酶
    • 21.14 拓扑异构酶
    • 21.15 单链DNA结合蛋白
    • 21.16 引物酶
    • 21.17 聚合酶
    • 21.18 连接酶
  • 22 RNA的生物合成
    • 22.1 前置问题及学习目标
    • 22.2 概述
    • 22.3 RNA 转录体系
    • 22.4 RNA 生物合成过程
    • 22.5 RNA 转录后加工
    • 22.6 RNA 复制
    • 22.7 必交作业
    • 22.8 RNA聚合酶
    • 22.9 DNA 转录模板
    • 22.10 真核和原核的启动子特点和功能
    • 22.11 终止子和增强子
    • 22.12 原核生物RNA转录
    • 22.13 真核生物RNA转录
    • 22.14 原核细胞RNA转录后加工
    • 22.15 真核细胞RNA转录后加工
    • 22.16 rRNA和tRNA的转录后加工
    • 22.17 mRNA的转录后加工
  • 23 蛋白质的翻译
    • 23.1 前置问题及学习目标
    • 23.2 概述
    • 23.3 蛋白质生物合成体系
    • 23.4 蛋白质生物合成过程
    • 23.5 蛋白质生物合成后加工(PTM)
    • 23.6 蛋白质翻译的抑制
    • 23.7 必交作业
    • 23.8 遗传密码载体-mRNA
    • 23.9 氨基酸载体—tRNA/adaptor
    • 23.10 蛋白质合成场所: 核糖体(Ribosomes)
    • 23.11 氨基酸的活化
    • 23.12 翻译的起始
    • 23.13 翻译的延长
    • 23.14 翻译的终止
    • 23.15 总结蛋白质生物合成过程
    • 23.16 真核生物蛋白质生物合成的主要区别
    • 23.17 总结参与蛋白质翻译合成的因子
    • 23.18 理解遗传信息传递在科研的应用
    • 23.19 一级结构加工
    • 23.20 高级结构加工
    • 23.21 蛋白质折叠异常所导致的疾病
    • 23.22 蛋白质的靶向输送(protein targeting)
    • 23.23 抗生素类
    • 23.24 干扰蛋白质生物合成的活性物质
高级结构加工

3.2Modification of advanced structure高级结构加工

a. Folding of newly formed peptide chain——新生肽链折叠

b. Subunit polymerization (obtaining function)——亚基聚合

c. Coenzyme connection(glycoprotein,lipoprotein,conjugated enzyme)—辅酶连接



a. Polypeptide chainfolds into natural conformation

                                                                            ——新生肽链折叠

Correct secondary structure, motif,  domain and final conformation are formed stepwisely.(形成正确的空间结构)

Primarystructure is the basis of advanced structure(蛋白一级结构为基础)

In thepresent of accesarymolecules: enzyme or chaperon.(分子伴侣为辅助)

Molecules involved innewly polypeptide folding

 1. 分子伴侣 (molecular chaperon)

 2. 蛋白二硫键异构酶 (protein disulfide isomerase, PDI)

3. 肽-脯氨酰顺反异构酶(peptide prolylcis-trans isomerase, PPI)

·Molecular chaperon (分子伴侣)

  Molecular chaperones are proteins that assist the non-covalent folding/unfolding and assembly/disassembly of othermacromolecular structures, but do not occur in these structures when thestructures are performing their normal biological functions having completedthe processes of folding and/or assembly.

分子伴侣是细胞一类保守蛋白质,促进各功能域和整体蛋白质的正确折叠。

1. 热休克蛋白(heat shock protein, HSP)    

HSP70, HSP40 and HSP90 family  

2. 伴侣素(chaperonins) 

Prokaryote: GroEL(eu: HSP60)and GroES(HSP10) family

HSP 作为分子伴侣的作用机制

    ·HSP70 辅助蛋白质折叠-通过与疏水片段的结合和解聚.

· 防止新生肽链聚集和错误折叠- inhibit “off path-way” folds.

Chaperonin(伴侣素)——Providing a microenvironment for protein to fold




Protein folding after translation



·Protein disulfide isomerase(蛋白二硫键异构酶 )

Protein disulfide isomerase is an enzyme in the endoplasmic reticulum in eukaryotes that catalyzes the formation and breakage of disulfide bonds between cysteine residues within proteins as they fold.This allows proteins to quickly find the correct arrangement of disulfide bonds in their fully folded state.

可在较大区段肽链中催化错配二硫键断裂并形成正确二硫键连接,最终使蛋白质形成热力学最稳定的天然构象。


·Prolyl isomerase(肽-脯氨酰顺反异构酶 )

肽链中肽酰-脯氨酸间形成的肽键有顺反两种异构体,空间构象明显差别。 

Prolyl isomerase is an enzyme found in both prokaryotes and eukaryotes that interconverts the cis and trans isomers of peptide bonds with the amino acid proline.

肽酰-脯氨酰顺反异构酶是蛋白质三维构象形成的限速酶,在肽链合成需形成顺式构型时,可使多肽在各脯氨酸弯折处形成准确折叠。 

 Properties of chaperon(分子伴侣特点

1. There is no specificity to nascent polypeptide chain

(无肽链特异性)

2. Coupled with hydrolysis of ATP(伴随ATP水解)

3. Contain no information about particular folding patterns.(无折叠信息)

4. Multiple functions.(多功能)

5. Conserved in primary sequence.(一级结构保守)