运筹学

张玮

目录

  • 1 绪论
    • 1.1 绪论
  • 2 线性规划模型
    • 2.1 线性规划的模型
  • 3 线性规划的解法
    • 3.1 线性规划的图解法
    • 3.2 线性规划的单纯形法
    • 3.3 线性规划的EXCEL求解
    • 3.4 解线性规划的人工变量法
  • 4 对偶理论与灵敏度分析
    • 4.1 线性规划的对偶模型
    • 4.2 线性规划的对偶理论
    • 4.3 对偶单纯形法
    • 4.4 LP问题参数的灵敏度分析
    • 4.5 结构的灵敏度分析及综合应用
    • 4.6 灵敏度分析的EXCEL求解
  • 5 运输问题
    • 5.1 产销平衡运输问题的数学模型
    • 5.2 产销平衡问题的表上作业法
    • 5.3 运输问题的进一步讨论
  • 6 目标规划
    • 6.1 目标规划模型建立
    • 6.2 目标规划模型的求解
  • 7 整数规划
    • 7.1 整数规划模型的建立
    • 7.2 整数规划模型的求解
    • 7.3 指派问题及其求解
  • 8 动态规划
    • 8.1 多阶段决策与最短路问题
    • 8.2 动态规划的基本概念和方程
    • 8.3 动态规划模型建立与求解
  • 9 图与网络优化
    • 9.1 图与网络的基本概念
    • 9.2 最小支撑树与最短路问题
    • 9.3 最大流问题
    • 9.4 最小费用最大流问题
  • 10 阅读
    • 10.1 阅读
  • 11 问卷调查
    • 11.1 问卷调查
多阶段决策与最短路问题
  • 1 视频
  • 2 重点、难点提要



动态规划(Dynamic Programming)

世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

多阶段决策

给定一个线路网络,两点之间连线上的数字表示两点间的距离(或费用) 。









决策问题:求一条由A到G的铺管线路,使总距离为最短(或总费用最小)(最短路径问题)

(1)走一步看一步,选近的

(2)枚举法:把从A到G的每一条线路找出来,比较其长度,从而找出最短路线。

(3)隐枚举法——动态规划求解思想

① 最短路问题的特性

(4)隐枚举法——动态规划求解思想

动态规划寻找最短路线——标号法









动态规划的最优化原理

动态规划方法基于R·Bellman等人提出的最优化原理:

一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。