运筹学

张玮

目录

  • 1 绪论
    • 1.1 绪论
  • 2 线性规划模型
    • 2.1 线性规划的模型
  • 3 线性规划的解法
    • 3.1 线性规划的图解法
    • 3.2 线性规划的单纯形法
    • 3.3 线性规划的EXCEL求解
    • 3.4 解线性规划的人工变量法
  • 4 对偶理论与灵敏度分析
    • 4.1 线性规划的对偶模型
    • 4.2 线性规划的对偶理论
    • 4.3 对偶单纯形法
    • 4.4 LP问题参数的灵敏度分析
    • 4.5 结构的灵敏度分析及综合应用
    • 4.6 灵敏度分析的EXCEL求解
  • 5 运输问题
    • 5.1 产销平衡运输问题的数学模型
    • 5.2 产销平衡问题的表上作业法
    • 5.3 运输问题的进一步讨论
  • 6 目标规划
    • 6.1 目标规划模型建立
    • 6.2 目标规划模型的求解
  • 7 整数规划
    • 7.1 整数规划模型的建立
    • 7.2 整数规划模型的求解
    • 7.3 指派问题及其求解
  • 8 动态规划
    • 8.1 多阶段决策与最短路问题
    • 8.2 动态规划的基本概念和方程
    • 8.3 动态规划模型建立与求解
  • 9 图与网络优化
    • 9.1 图与网络的基本概念
    • 9.2 最小支撑树与最短路问题
    • 9.3 最大流问题
    • 9.4 最小费用最大流问题
  • 10 阅读
    • 10.1 阅读
  • 11 问卷调查
    • 11.1 问卷调查
整数规划模型的求解
  • 1 视频
  • 2 重点、难点提要



求解ILP问题方法的思考:

  “舍入取整”法:即先不考虑整数性约束,而去求解其相应的LP问题(称为松驰问题),然后将得到的非整数最优解用“舍入取整”的方法。这样能否得到整数最优解?否!这是因为“舍入取整”的解一般不是原问题的最优解,甚至是非可行解。

   但在处理个别实际问题时,如果允许目标函数值在某一误差范围内,有时也可采用“舍入取整”得到的整数可行解作为原问题整数最优解的近似。这样可节省求解的人力、物力和财力。


    严格地说,IP是个非线性规划问题。这是因为IP的可行解集是由一些离散的非负整数所组成,不是一个凸集。迄今为止,求解IP问题尚无统一的有效算法。但常用的有求解一般整数规划的分枝定界法、割平面法和求解0-1规划的隐枚举法。在这里我们只介绍分枝定界法和隐枚举法。

1、整数规划的分枝定界法  

分枝定界法可用于解纯整数或混合整数规划问题。在本世纪六十年代初由Land Doig和Dakin等人提出。由于该方法灵活且便于利用计算机求解,所以它是目前求解整数规划的重要方法。 

2、0-1整数规划的特殊求解

对于0-1整数规划,由于决策变量只取0,1两个值,除了能用一般整数规划的求解方法——分枝定界法求解外,还有其特殊的解法。下面介绍求解0-1规划的完全枚举法和隐枚举法。