运筹学

张玮

目录

  • 1 绪论
    • 1.1 绪论
  • 2 线性规划模型
    • 2.1 线性规划的模型
  • 3 线性规划的解法
    • 3.1 线性规划的图解法
    • 3.2 线性规划的单纯形法
    • 3.3 线性规划的EXCEL求解
    • 3.4 解线性规划的人工变量法
  • 4 对偶理论与灵敏度分析
    • 4.1 线性规划的对偶模型
    • 4.2 线性规划的对偶理论
    • 4.3 对偶单纯形法
    • 4.4 LP问题参数的灵敏度分析
    • 4.5 结构的灵敏度分析及综合应用
    • 4.6 灵敏度分析的EXCEL求解
  • 5 运输问题
    • 5.1 产销平衡运输问题的数学模型
    • 5.2 产销平衡问题的表上作业法
    • 5.3 运输问题的进一步讨论
  • 6 目标规划
    • 6.1 目标规划模型建立
    • 6.2 目标规划模型的求解
  • 7 整数规划
    • 7.1 整数规划模型的建立
    • 7.2 整数规划模型的求解
    • 7.3 指派问题及其求解
  • 8 动态规划
    • 8.1 多阶段决策与最短路问题
    • 8.2 动态规划的基本概念和方程
    • 8.3 动态规划模型建立与求解
  • 9 图与网络优化
    • 9.1 图与网络的基本概念
    • 9.2 最小支撑树与最短路问题
    • 9.3 最大流问题
    • 9.4 最小费用最大流问题
  • 10 阅读
    • 10.1 阅读
  • 11 问卷调查
    • 11.1 问卷调查
解线性规划的人工变量法



人工变量法

是在原问题不含有初始可行基B=I的情况下,人为的对约束条件增加虚拟的非负变量(即人工变量),构造出含有B=I的另一个LP问题后求解。当增加的人工变量全部取值为0时,才与原问题等价。

人工变量法常见的有大M法和两阶段法

(一)大M法(人工变量法)

(2)两阶段法

   第一阶段:不考虑原问题是否存在基可行解;给原LP问题的约束条件加入人工变量,构造仅含人工变量的目标函数并要求实现最小化

   第二阶段:在第一阶段所得的基可行解的基础上,将最终表中的人工变量列删去,同时将人工目标函数行换为原问题的目标函数作为第二阶段计算的初始表。