通信系统仿真

崔春雷

目录

  • 1 第一单元: MATLAB基础
    • 1.1 课程说明与资料
      • 1.1.1 作业参考答案
      • 1.1.2 移动22级作业答案
    • 1.2 MATLAB安装与运行环境
      • 1.2.1 MATLAB介绍
    • 1.3 基本数据类型:数值类型
    • 1.4 基本数据类型:字符类型
    • 1.5 数据类型转换与输出
    • 1.6 数组与矩阵基础
      • 1.6.1 矩阵运算进阶
    • 1.7 数组与矩阵常用函数
    • 1.8 matlab中的逻辑运算
    • 1.9 实验: MATLAB常用数学函数
      • 1.9.1 实验 作业答案
    • 1.10 元胞数组
    • 1.11 结构体数组
      • 1.11.1 结构体进阶
      • 1.11.2 元胞数组与结构体数组对比
      • 1.11.3 map 容器
    • 1.12 附录:MATLAB常用基础命令
    • 1.13 拓展内容:实时脚本
      • 1.13.1 实时脚本示例
    • 1.14 课程作业与答案
      • 1.14.1 《通信系统仿真》期末考试
  • 2 第二单元:Matlab 程序设计
    • 2.1 顺序结构程序
    • 2.2 分支结构—— if语句
    • 2.3 分支结构—— switch语句
    • 2.4 循环结构—— while语句
    • 2.5 循环结构—— for语句
    • 2.6 图像处理基础
    • 2.7 Matlab的函数
      • 2.7.1 函数内容的课外扩展
    • 2.8 本章实验:for循环的应用
      • 2.8.1 素数问题
        • 2.8.1.1 素数的螺旋线排列
      • 2.8.2 3X+1猜想
      • 2.8.3 7 行代码计算 π
    • 2.9 排序算法
      • 2.9.1 冒泡排序
      • 2.9.2 选择排序
      • 2.9.3 插入排序
      • 2.9.4 快速排序
      • 2.9.5 基数排序
      • 2.9.6 计数排序
      • 2.9.7 堆排序
    • 2.10 动态规划算法
      • 2.10.1 动态规划编程实例
      • 2.10.2 动态规划:01背包问题
      • 2.10.3 动态规划常见题目分析
      • 2.10.4 动态规划题目分析2
    • 2.11 常用算法简介
      • 2.11.1 剪枝算法
      • 2.11.2 二分查找
      • 2.11.3 递归算法
      • 2.11.4 回溯算法
        • 2.11.4.1 Leetcode回溯题目合集
        • 2.11.4.2 回溯算法总结
        • 2.11.4.3 回溯法解数独问题
        • 2.11.4.4 DFS与BFS
          • 2.11.4.4.1 DFS/BFS原理
          • 2.11.4.4.2 BFS的应用:Dijkstra算法
      • 2.11.5 n 皇后问题专题
      • 2.11.6 双指针算法
      • 2.11.7 数组模拟链表(约瑟夫环)
      • 2.11.8 Hash(哈希表)
      • 2.11.9 图论与路径规划
        • 2.11.9.1 迪杰斯特拉算法
        • 2.11.9.2 A*算法
          • 2.11.9.2.1 A*算法的MATLAB实现
        • 2.11.9.3 RRT路径规划算法
          • 2.11.9.3.1 RRT算法 MATLAB代码
          • 2.11.9.3.2 参考资料
      • 2.11.10 数据结构
        • 2.11.10.1 数据结构例题
      • 2.11.11 前缀和 差分 双指针
      • 2.11.12 位运算
      • 2.11.13 常用算法代码模板
    • 2.12 练习题库
    • 2.13 code
      • 2.13.1 简易计算器gui代码
      • 2.13.2 五子棋
      • 2.13.3 连连看小游戏
      • 2.13.4 递归算法与汉诺塔
      • 2.13.5 有理数的小数循环节
    • 2.14 MATLAB编程风格
      • 2.14.1 向量化编程专题
  • 3 第三单元:Matlab 图形图像处理
    • 3.1 二维图形绘图基础
    • 3.2 二维图形绘图进阶
    • 3.3 三维图形绘图
      • 3.3.1 MATLAB绘图小结
        • 3.3.1.1 用matlab绘制好看图像
    • 3.4 MATLAB高级绘图
    • 3.5 文件操作
    • 3.6 Matlab图像处理进阶
      • 3.6.1 补充:Matlab图像处理常用函数
      • 3.6.2 RGB/HSV/HSI颜色模型
      • 3.6.3 图片切换动画效果
      • 3.6.4 图像连通域标记
      • 3.6.5 图像旋转与插值
      • 3.6.6 图像的形态学
      • 3.6.7 空间滤波
        • 3.6.7.1 图像中常见的噪声类型与滤波方法
        • 3.6.7.2 matlab中的滤波函数
        • 3.6.7.3 BM3D 去噪算法
        • 3.6.7.4 双边滤波
      • 3.6.8 图像的频域处理
    • 3.7 本章总结
    • 3.8 实验 : matlab 绘图练习1
    • 3.9 实验: matlab 绘图练习2
    • 3.10 实验 :数学函数图像绘制
    • 3.11 实验:绘图综合练习
    • 3.12 实验:曲线拟合
    • 3.13 实验:牛顿法求解方程的根
    • 3.14 实验:信号的傅里叶变换
      • 3.14.1 傅里叶变换、小波变换、希尔伯特变换
      • 3.14.2 新建目录
    • 3.15 课外补充:图像处理基础1
    • 3.16 课外补充:图像处理基础2
    • 3.17 课外补充:图像处理基础3
    • 3.18 课外补充:PYTHON基础
  • 4 第五单元:MATLAB通信仿真
    • 4.1 现代通信系统的介绍
    • 4.2 模拟通信系统的仿真原理
    • 4.3 HDB3编解码的仿真实现
    • 4.4 SIMULINK和其模块简介
    • 4.5 数字通信系统的仿真原理
    • 4.6 模拟通信系统Simulink仿真
    • 4.7 数字通信系统Simulink仿真
    • 4.8 音频信号测处理与仿真
    • 4.9 图像数字水印技术
      • 4.9.1 三角函数到傅里叶变换再到语音识别与数字水印
    • 4.10 信息系统与算法
      • 4.10.1 递归算法
        • 4.10.1.1 递归与堆栈的关系
      • 4.10.2 哈希表
      • 4.10.3 双指针算法
        • 4.10.3.1 双指针算法实战
        • 4.10.3.2 双指针进阶:滑动窗口算法
      • 4.10.4 字符串匹配 KMP算法
        • 4.10.4.1 字符串匹配B-M算法
      • 4.10.5 快速傅里叶变换
      • 4.10.6 回溯算法
      • 4.10.7 动态规划
      • 4.10.8 分治算法
      • 4.10.9 Dijkstra算法
  • 5 第六单元: systemview通信仿真
    • 5.1 SystemView概述
    • 5.2 模拟通信系统 数字系统的仿真分析
    • 5.3 SystemView通信系统仿真进阶
    • 5.4 新建课程目录
  • 6 第四单元:MATLAB高级应用
    • 6.1 符号运算基础
      • 6.1.1 利用Matlab自动推导公式
    • 6.2 Matlab中的数值计算
      • 6.2.1 积分的计算
      • 6.2.2 龙格库塔:常微分方程的数值解法
      • 6.2.3 fmincon函数与非线性方程最小值
    • 6.3 统计、拟合、插值
      • 6.3.1 协方差与相关系数
    • 6.4 GUI设计初步
    • 6.5 matlab GUI界面编程
      • 6.5.1 gui实例
      • 6.5.2 gui编程中常用函数
      • 6.5.3 App Designer入门
    • 6.6 实验:GUI设计图像空间变换系统
    • 6.7 作业:利用GUI设计 计算器、信号发生器等
    • 6.8 MTALB数据导入方法
    • 6.9 课外补充:MATLAB的App会取代GUI吗?
    • 6.10 模拟退火算法matlab实现
    • 6.11 遗传算法的Matlab实现
      • 6.11.1 进化算法(Evolutionary Algorithm)及相关函数介绍
    • 6.12 粒子群算法 matlab实现
      • 6.12.1 粒子群算法及MATLAB实例仿真
    • 6.13 BP网络的应用
    • 6.14 matlab 结构体
    • 6.15 群智能算法合集
  • 7 拓展知识
    • 7.1 什么是算法的时间复杂度?
    • 7.2 Notepad++使用教程
    • 7.3 MATLAB常用函数总结
    • 7.4 MATLAB常用知识点总结
    • 7.5 MATLAB命令大全
    • 7.6 视频:MATLAB官方基础教程
    • 7.7 经典书籍:Matlab2012经典超强教程
    • 7.8 经典书籍:MATLAB揭秘(自学宝典)
    • 7.9 经典资料:MATLAB N个实用技巧
    • 7.10 Matlab编程小技巧
    • 7.11 寻优算法
      • 7.11.1 Dijkstra算法python实现
    • 7.12 PYTHON基础教程
      • 7.12.1 Python进阶
      • 7.12.2 Python小技巧
      • 7.12.3 Python总结
        • 7.12.3.1 Python循环语句总结
        • 7.12.3.2 24个顶级Python库
        • 7.12.3.3 魔法函数
      • 7.12.4 廖雪峰python
      • 7.12.5 正则表达式基础
      • 7.12.6 numpy
        • 7.12.6.1 101道Numpy习题
        • 7.12.6.2 Numpy简要语法教程
        • 7.12.6.3 Numpy实现全连接神经网络 (手写数字识别)
        • 7.12.6.4 图解NumPy
      • 7.12.7 matplotlib
        • 7.12.7.1 matplotlib练习50题
        • 7.12.7.2 Matplotlib速查表
        • 7.12.7.3 Matplotlib 实操指南
      • 7.12.8 Python3 模块 import
      • 7.12.9 Python 小项目
    • 7.13 参考资源:数据结构与算法
      • 7.13.1 十大经典排序算法总结
    • 7.14 机器学习概述
      • 7.14.1 反向传播算法
        • 7.14.1.1 反向传播的数学原理
      • 7.14.2 极大似然估计
        • 7.14.2.1 极大似然估计与最小二乘法
      • 7.14.3 Batch Normalization
        • 7.14.3.1 Batch Normalization&Dropout浅析
        • 7.14.3.2 ​BN层的梯度反向传播计算
        • 7.14.3.3 Batch Size的大小与神经网络的性能
        • 7.14.3.4 标准化和归一化
      • 7.14.4 主成分分析PCA与SVD奇异值分解
        • 7.14.4.1 岭回归 与 PCA
        • 7.14.4.2 PCA原理推导
        • 7.14.4.3 PCA原理新解
        • 7.14.4.4 svd
        • 7.14.4.5 PCA数学原理
      • 7.14.5 正则化
        • 7.14.5.1 L1、L2正则化和过拟合 总结
        • 7.14.5.2 L1 和 L2 正则化的直观解释
      • 7.14.6 SVM
        • 7.14.6.1 从零推导支持向量机(SVM)
        • 7.14.6.2 支持向量机(SVM)介绍
        • 7.14.6.3 SVM推导与实战
        • 7.14.6.4 支持向量机的直观理解
        • 7.14.6.5 浅显易懂的支持向量机SVM
      • 7.14.7 线性回归
      • 7.14.8 逻辑回归
      • 7.14.9 BP算法
        • 7.14.9.1 万能逼近——神经网络拟合任意函数原理
      • 7.14.10 激活与池化
        • 7.14.10.1 激活函数与损失函数 小结
      • 7.14.11 深度学习简述
        • 7.14.11.1 MATLAB2020深度学习实例
      • 7.14.12 损失函数与误差反向传播
        • 7.14.12.1 梯度下降与损失函数
      • 7.14.13 深度学习优化问题
      • 7.14.14 梯度下降法
        • 7.14.14.1 各类梯度下降算法的Python实现
        • 7.14.14.2 梯度下降的直观理解
        • 7.14.14.3 动量、RMSProp、Adam
      • 7.14.15 卷积的概念
        • 7.14.15.1 卷积的矩阵化算法
      • 7.14.16 局部连接
      • 7.14.17 RNN
      • 7.14.18 LSTM
      • 7.14.19 CNN-四大经典CNN技术浅析
      • 7.14.20 熵(Entropy)与交叉熵
      • 7.14.21 softmax函数详解
      • 7.14.22 自编码算法详细理解与代码实现
      • 7.14.23 pytorch
        • 7.14.23.1 ​PyTorch简介
          • 7.14.23.1.1 Pytorch快速入门资料
        • 7.14.23.2 CNN的PyTorch实现
        • 7.14.23.3 pytorch总结
        • 7.14.23.4 PyTorch trick 集锦
        • 7.14.23.5 在PyTorch上加载自定义数据集
        • 7.14.23.6 实战:Pytorch识别验证码
        • 7.14.23.7 实战:Transformer的最简洁pytorch实现
        • 7.14.23.8 使用PyTorch实现神经网络分类
      • 7.14.24 卷积神经网络CNN概述
        • 7.14.24.1 CNN 简易原理
        • 7.14.24.2 卷积神经网络CNN原理详解
        • 7.14.24.3 自己手写一个卷积神经网络
        • 7.14.24.4 CNN反向传播算法
        • 7.14.24.5 卷积计算、作用与思想
        • 7.14.24.6 用卷积神经网络CNN识别手写数字集
        • 7.14.24.7 卷积 池化 参数的计算
        • 7.14.24.8 im2col方法实现卷积算法
        • 7.14.24.9 卷积核的梯度计算
        • 7.14.24.10 卷积层反向传播推导及实现
        • 7.14.24.11 反向传输算法
          • 7.14.24.11.1 resnet残差网络
        • 7.14.24.12 CNN反向传播的MATLAB实现
      • 7.14.25 神经网络的调参技巧
      • 7.14.26 BP神经网络
        • 7.14.26.1 零开始搭建bp神经网络
        • 7.14.26.2 MATLAB自带的bp工具箱
        • 7.14.26.3 神经网络中偏置(bias)的作用
      • 7.14.27 聚类分析 k-means
        • 7.14.27.1 matlab做聚类分析(k-means)
        • 7.14.27.2 聚类模型探讨综述
        • 7.14.27.3 5种经典聚类算法
      • 7.14.28 深度学习的一些概念
      • 7.14.29 人工智能简述:AI的过去和现在
      • 7.14.30 k-NN(k近邻算法)
      • 7.14.31 神经网络中的优化器:BGD、SGD、MBGD、Momentum
      • 7.14.32 卷积神经网络的经典网络总结
        • 7.14.32.1 卷积神经网络中十大拍案叫绝的操作
      • 7.14.33 GAN 对抗样本攻击
      • 7.14.34 蒙特卡洛模拟
      • 7.14.35 dropout与随机部分连接
      • 7.14.36 Jupyter 等 IDE概览
      • 7.14.37 分类算法常用评价指标
      • 7.14.38 Inception 网络与不变性
      • 7.14.39 卷积神经网络的可视化
      • 7.14.40 隐马尔可夫模型HMM
        • 7.14.40.1 马尔科夫链
    • 7.15 MATLAB音频处理
      • 7.15.1 python处理音频信号
    • 7.16 图像处理
      • 7.16.1 图像处理中的指标
    • 7.17 代码集
    • 7.18 论文写作与阅读方法
      • 7.18.1 期刊投稿攻略
      • 7.18.2 论文排版教程
      • 7.18.3 SCI-HUB论文下载技巧
      • 7.18.4 几种论文写作神器,提高写作效率
      • 7.18.5 latex入门
      • 7.18.6 LaTeX教程
    • 7.19 机器学习常用的网站以及资源
      • 7.19.1 很详细的ML&DL学习博客
    • 7.20 SymPy 符号计算基本教程
  • 8 程序设计数学基础
    • 8.1 编程数学基础
      • 8.1.1 概率的历史
      • 8.1.2 概率
        • 8.1.2.1 常见概率分布
          • 8.1.2.1.1 二维正态分布
        • 8.1.2.2 蒙特卡罗方法
        • 8.1.2.3 置信区间
        • 8.1.2.4 协方差与相关系数
      • 8.1.3 矩阵 向量求导法则
      • 8.1.4 雅可比矩阵 海森矩阵
      • 8.1.5 矩阵的几种分解方式
      • 8.1.6 行列式和代数余子式
      • 8.1.7 向量
      • 8.1.8 矩阵的基本运算
      • 8.1.9 矩阵分析
      • 8.1.10 矩阵的LU分解
      • 8.1.11 矩阵奇异值分解(SVD)
        • 8.1.11.1 SVD分解2
        • 8.1.11.2 SVD分解逐步推导
        • 8.1.11.3 奇异值与特征值的意义
      • 8.1.12 随机向量
        • 8.1.12.1 随机过程简述
      • 8.1.13 投影矩阵和最小二乘
      • 8.1.14 知乎数学精选集
        • 8.1.14.1 高数问题集
      • 8.1.15 小波变换
      • 8.1.16 程序设计数学基础1:高等数学
      • 8.1.17 程序设计数学基础2:线性代数
      • 8.1.18 程序设计数学基础3:概率论和数理统计
      • 8.1.19 向量的距离与相似度计算
      • 8.1.20 复数
      • 8.1.21 高等数学——幂级数
      • 8.1.22 无穷小的本质
      • 8.1.23 数列极限和收敛性
      • 8.1.24 不定积分技巧总结
    • 8.2 有趣的数学题目
    • 8.3 高等数学
      • 8.3.1 泰勒级数
  • 9 路径规划与智能算法
    • 9.1 常见路径规划算法简介
    • 9.2 Dijkstra算法详细
  • 10 教学文档
    • 10.1 授课计划
    • 10.2 课程标准
代码集


1.推荐:常见算法的python实现(github上25000多star)

github上发现一个25000多star的仓库,把各种常见算法用python实现了,而且还有动图演示,非常值得推荐。

仓库地址:github.com/TheAlgorithm

仓库说明

这个仓库用python语言实现了绝大部分算法,主要是用于教学目的,因此效率稍微低于工业界。

内容说明

包含了常见的算法的python实现,如二叉树、排序、查找等等。这些是算法工程师必须掌握的技能。

文件目录




自己手写的DNN神经网络——手写数字识别:

 % DNN手写数字

 

%数据准备

clc

clear all


data=[];    %大小为 794*1000,共1000个样本,每个样本为一个784的列向量 ;

                 % [1:784,1000]为图片,[785:794,1000]为标签(one hot)

col=0;

f1=fullfile('E:\教学工作\在线课程建设\《通信网软件仿真》在线课程\data\' )

for n_x=0:9

      for n_y=1:100

             col=col+1;

             j_x=num2str(n_x);

             j_y=num2str(n_y);

             p=strcat( f1, j_x,'\' , j_x , '_', j_y , '.bmp' );

             pic=imread(p);

             pic=double(pic)/255;

             

             data(1:784,col)=reshape(pic,784,1);

             switch(n_x)     

                    case 0

                            data(785:794,col) = [0,0,0,0,0,0,0,0,0,1]';     

                    case 1

                            data(785:794,col) = [1,0,0,0,0,0,0,0,0,0]'; 

                    case 2

                            data(785:794,col) = [0,1,0,0,0,0,0,0,0,0]';     

                    case 3

                            data(785:794,col) = [0,0,1,0,0,0,0,0,0,0]';     

                    case 4

                            data(785:794,col) = [0,0,0,1,0,0,0,0,0,0]'; 

                    case 5

                            data(785:794,col) = [0,0,0,0,1,0,0,0,0,0]';   

                    case 6

                            data(785:794,col) = [0,0,0,0,0,1,0,0,0,0]';     

                    case 7

                            data(785:794,col) = [0,0,0,0,0,0,1,0,0,0]'; 

                    case 8

                            data(785:794,col) = [0,0,0,0,0,0,0,1,0,0]';     

                    case 9

                            data(785:794,col) = [0,0,0,0,0,0,0,0,1,0]';                                  

             end

             

      end

end



%% 

%参数初始化

%对数据进行洗牌,即打乱数据顺序,增加数据的随机性。

rowrank = randperm(size(data, 2)) ;   % 把数据的列号进行洗牌处理。

data_shuffle= data(:, rowrank);        %按照打乱的列号,重新封装数据


X_train=data(1:784,:)';

y_train=data(785:794,:);


% 激活函数 及其导函数

sigmoid = @(x) 1./(1 + exp(-x));

diff_sigmoid=@(x) x .* (1 - x);


% initializing the variables

epoch=2000 ;           % number of training iterations

lr=0.001;                   % learning rate


X_size=size(X_train);

L1_neuro=100;

L2_neuro=120;

L3_neuro=10;


%  initializing weight and bias

w_L1=randn(X_size(2),L1_neuro)/10;

b_L1=randn(1,L1_neuro)/10;

w_L2=randn(L1_neuro,L2_neuro)/10;

b_L2=randn(1,L2_neuro)/10;

w_L3=randn(L2_neuro,L3_neuro)/10;

b_L3=randn(1,L3_neuro)/10;


 

%  training the model

for i=1:epoch

     if rem(i,100)==0

         i

     end

    % Forward Propogation

    z_L1=X_train*w_L1+b_L1;

    a_L1=sigmoid(z_L1);

    z_L2=a_L1*w_L2+b_L2;

    a_L2=sigmoid(z_L2);

    z_L3=a_L2*w_L3+b_L3;

    a_L3=z_L3';

    out=softmax(a_L3);  


    

    %准确率(Precision)

     %此时out与y_train都是10行1000列,即1000个样本,每个样本为一个10*1的列向量

     if rem(i,50)==0 

         [out_v,out_loc]=max(out); %获得每个样本(列方向)最大值位置索引,得到1个1*1000行向量

         [y_v,y_loc]=max(y_train);   %获得每个标签(列方向)最大值位置索引,得到1个1*1000行向量

         %利用==运算得到0-1分布的逻辑矩阵(1*1000),并统计这个矩阵中和,即1的个数,也就是正确预测的数量

         Precision=sum(out_loc==y_loc);  

         Precision=vpa(Precision/length(out));  %预测对的数量除以总样本数,得到准确率

         loss= sum(sum((out-y_train).^2))/1000 %为了简单采用MSE loss,实际程序采用的是交叉熵

           fprintf('epoch=%d  ,Accuracy Rate=%f  ,  loss=%f  \n ',i,Precision,loss)

         %pause()                %手动详细查看各个阶段的准确率和损失函数值

     end


    % 计算梯度的反向传播

    deta_a_L3 = (out-y_train);

    deta_z_L3=deta_a_L3';     %   deta_z_L3=deta_a_L3.*diff_sigmoid(a_L3);

    deta_w_L3=(a_L2')*deta_z_L3;

    deta_b_L3=sum(deta_z_L3,1);

  

    deta_z_L2=deta_z_L3*w_L3'.*diff_sigmoid(a_L2);

    deta_w_L2=a_L1'*deta_z_L2;

    deta_b_L2=sum(deta_z_L2,1);

    

    deta_z_L1=deta_z_L2*w_L2'.*diff_sigmoid(a_L1);

    deta_w_L1= X_train'*deta_z_L1;

    deta_b_L1=sum(deta_z_L1,1);


    %通过梯度更新各层的参数w,b

    w_L3=w_L3-deta_w_L3*lr;

    b_L3=b_L3-deta_b_L3*lr;

    w_L2=w_L2-deta_w_L2*lr;

    b_L2=b_L2-deta_b_L2*lr;

    w_L1=w_L1-deta_w_L1*lr;

    b_L1=b_L1-deta_b_L1*lr;

end




%% 

% test 测试数据集中第k个样本

k=610;

X_test=data(1:784,k)';

Y_test=data(785:794,k)';


% 样本数据前向传播 

z_L1=X_test*w_L1+b_L1;

a_L1=sigmoid(z_L1);

z_L2=a_L1*w_L2+b_L2;

a_L2=sigmoid(z_L2);

z_L3=a_L2*w_L3+b_L3;

a_L3=z_L3';

out=softmax(a_L3);  


out'

Y_test


pic2=reshape(X_test,28,28);

imshow(pic2)




冒泡排序的代码

from __future__ import print_function

def bubble_sort(collection):
   """Pure implementation of bubble sort algorithm in Python
   :param collection: some mutable ordered collection with heterogeneous
   comparable items inside
   :return: the same collection ordered by ascending
   Examples:
   >>> bubble_sort([0, 5, 3, 2, 2])
   [0, 2, 2, 3, 5]
   >>> bubble_sort([])
   []
   >>> bubble_sort([-2, -5, -45])
   [-45, -5, -2]

   >>> bubble_sort([-23,0,6,-4,34])
   [-23,-4,0,6,34]
"""
   length = len(collection)
   for i in range(length-1):
       swapped = False
       for j in range(length-1-i):
           if collection[j] > collection[j+1]:
               swapped = True
               collection[j], collection[j+1] = collection[j+1], collection[j]
           if not swapped: break # Stop iteration if the collection is sorted.
       return collection

if __name__ == '__main__':
   try:
       raw_input # Python 2
   except NameError:
       raw_input = input # Python 3
   user_input = raw_input('Enter numbers separated by a comma:').strip()
   unsorted = [int(item) for item in user_input.split(',')]
   print(*bubble_sort(unsorted), sep=',')