1. 牛顿法求解方程的根
有时候,在方程比较复杂的情况下,使用一般方法求解它的根并不容易。牛顿法通过迭代的方式和不断逼近的思想,可以近似求得方程较为准确的根。
牛顿法求根的核心思想是泰勒一阶展开。例如对于方程 f(x) = 0,我们在任意一点 x0 处,进行一阶泰勒展开:
令 f(x) = 0,带入上式,即可得到:
注意,这里使用了近似,得到的 x 并不是方程的根,只是近似解。但是,x 比 x0 更接近于方程的根。效果如下图所示:
然后,利用迭代方法求解,以 x 为 x0,求解下一个距离方程的根更近的位置。迭代公式可以写成:
经过一定次数的有效迭代后,一般都能保证在方程的根处收敛。下面给出整个迭代收敛过程的动态演示。
2. 牛顿法凸优化
上一部分介绍牛顿法如何求解方程的根,这一特性可以应用在凸函数的优化问题上。
机器学习、深度学习中,损失函数的优化问题一般是基于一阶导数梯度下降的。现在,从另一个角度来看,想要让损失函数最小化,这其实是一个最值问题,对应函数的一阶导数 f'(x) = 0。也就是说,如果我们找到了能让 f'(x) = 0 的点 x,损失函数取得最小值,也就实现了模型优化目标。
现在的目标是计算 f’(x) = 0 对应的 x,即 f’(x) = 0 的根。转化为求根问题,就可以利用上一节的牛顿法了。
与上一节有所不同,首先,对 f(x) 在 x0 处进行二阶泰勒展开:
对上式左右两边求导,然后令 f’(x) = 0 ,可得:
同样,虽然 x 并不是最优解点,但是 x 比 x0 更接近 f'(x) = 0 的根。这样,就能得到最优化的迭代公式:
通过迭代公式,就能不断地找到 f'(x) = 0 的近似根,从而也就实现了损失函数最小化的优化目标。
实验要求:用牛顿法求方程 sin(x*2)- exp(x/5)+1.2=0,在【1-2】之间的根。
clc
f=@(x)sin(x*2)- exp(x/5)+1.2;
fd=@(x)2*cos(2*x) - exp(x/5)/5;
x=1 ;
for n=1:10
x=x-f(x)/fd(x);
vpa(x)
pause()
end
vpa(x)
fzero函数解方程的过程: