通信系统仿真

崔春雷

目录

  • 1 第一单元: MATLAB基础
    • 1.1 课程说明与资料
      • 1.1.1 作业参考答案
      • 1.1.2 移动22级作业答案
    • 1.2 MATLAB安装与运行环境
      • 1.2.1 MATLAB介绍
    • 1.3 基本数据类型:数值类型
    • 1.4 基本数据类型:字符类型
    • 1.5 数据类型转换与输出
    • 1.6 数组与矩阵基础
      • 1.6.1 矩阵运算进阶
    • 1.7 数组与矩阵常用函数
    • 1.8 matlab中的逻辑运算
    • 1.9 实验: MATLAB常用数学函数
      • 1.9.1 实验 作业答案
    • 1.10 元胞数组
    • 1.11 结构体数组
      • 1.11.1 结构体进阶
      • 1.11.2 元胞数组与结构体数组对比
      • 1.11.3 map 容器
    • 1.12 附录:MATLAB常用基础命令
    • 1.13 拓展内容:实时脚本
      • 1.13.1 实时脚本示例
    • 1.14 课程作业与答案
      • 1.14.1 《通信系统仿真》期末考试
  • 2 第二单元:Matlab 程序设计
    • 2.1 顺序结构程序
    • 2.2 分支结构—— if语句
    • 2.3 分支结构—— switch语句
    • 2.4 循环结构—— while语句
    • 2.5 循环结构—— for语句
    • 2.6 图像处理基础
    • 2.7 Matlab的函数
      • 2.7.1 函数内容的课外扩展
    • 2.8 本章实验:for循环的应用
      • 2.8.1 素数问题
        • 2.8.1.1 素数的螺旋线排列
      • 2.8.2 3X+1猜想
      • 2.8.3 7 行代码计算 π
    • 2.9 排序算法
      • 2.9.1 冒泡排序
      • 2.9.2 选择排序
      • 2.9.3 插入排序
      • 2.9.4 快速排序
      • 2.9.5 基数排序
      • 2.9.6 计数排序
      • 2.9.7 堆排序
    • 2.10 动态规划算法
      • 2.10.1 动态规划编程实例
      • 2.10.2 动态规划:01背包问题
      • 2.10.3 动态规划常见题目分析
      • 2.10.4 动态规划题目分析2
    • 2.11 常用算法简介
      • 2.11.1 剪枝算法
      • 2.11.2 二分查找
      • 2.11.3 递归算法
      • 2.11.4 回溯算法
        • 2.11.4.1 Leetcode回溯题目合集
        • 2.11.4.2 回溯算法总结
        • 2.11.4.3 回溯法解数独问题
        • 2.11.4.4 DFS与BFS
          • 2.11.4.4.1 DFS/BFS原理
          • 2.11.4.4.2 BFS的应用:Dijkstra算法
      • 2.11.5 n 皇后问题专题
      • 2.11.6 双指针算法
      • 2.11.7 数组模拟链表(约瑟夫环)
      • 2.11.8 Hash(哈希表)
      • 2.11.9 图论与路径规划
        • 2.11.9.1 迪杰斯特拉算法
        • 2.11.9.2 A*算法
          • 2.11.9.2.1 A*算法的MATLAB实现
        • 2.11.9.3 RRT路径规划算法
          • 2.11.9.3.1 RRT算法 MATLAB代码
          • 2.11.9.3.2 参考资料
      • 2.11.10 数据结构
        • 2.11.10.1 数据结构例题
      • 2.11.11 前缀和 差分 双指针
      • 2.11.12 位运算
      • 2.11.13 常用算法代码模板
    • 2.12 练习题库
    • 2.13 code
      • 2.13.1 简易计算器gui代码
      • 2.13.2 五子棋
      • 2.13.3 连连看小游戏
      • 2.13.4 递归算法与汉诺塔
      • 2.13.5 有理数的小数循环节
    • 2.14 MATLAB编程风格
      • 2.14.1 向量化编程专题
  • 3 第三单元:Matlab 图形图像处理
    • 3.1 二维图形绘图基础
    • 3.2 二维图形绘图进阶
    • 3.3 三维图形绘图
      • 3.3.1 MATLAB绘图小结
        • 3.3.1.1 用matlab绘制好看图像
    • 3.4 MATLAB高级绘图
    • 3.5 文件操作
    • 3.6 Matlab图像处理进阶
      • 3.6.1 补充:Matlab图像处理常用函数
      • 3.6.2 RGB/HSV/HSI颜色模型
      • 3.6.3 图片切换动画效果
      • 3.6.4 图像连通域标记
      • 3.6.5 图像旋转与插值
      • 3.6.6 图像的形态学
      • 3.6.7 空间滤波
        • 3.6.7.1 图像中常见的噪声类型与滤波方法
        • 3.6.7.2 matlab中的滤波函数
        • 3.6.7.3 BM3D 去噪算法
        • 3.6.7.4 双边滤波
      • 3.6.8 图像的频域处理
    • 3.7 本章总结
    • 3.8 实验 : matlab 绘图练习1
    • 3.9 实验: matlab 绘图练习2
    • 3.10 实验 :数学函数图像绘制
    • 3.11 实验:绘图综合练习
    • 3.12 实验:曲线拟合
    • 3.13 实验:牛顿法求解方程的根
    • 3.14 实验:信号的傅里叶变换
      • 3.14.1 傅里叶变换、小波变换、希尔伯特变换
      • 3.14.2 新建目录
    • 3.15 课外补充:图像处理基础1
    • 3.16 课外补充:图像处理基础2
    • 3.17 课外补充:图像处理基础3
    • 3.18 课外补充:PYTHON基础
  • 4 第五单元:MATLAB通信仿真
    • 4.1 现代通信系统的介绍
    • 4.2 模拟通信系统的仿真原理
    • 4.3 HDB3编解码的仿真实现
    • 4.4 SIMULINK和其模块简介
    • 4.5 数字通信系统的仿真原理
    • 4.6 模拟通信系统Simulink仿真
    • 4.7 数字通信系统Simulink仿真
    • 4.8 音频信号测处理与仿真
    • 4.9 图像数字水印技术
      • 4.9.1 三角函数到傅里叶变换再到语音识别与数字水印
    • 4.10 信息系统与算法
      • 4.10.1 递归算法
        • 4.10.1.1 递归与堆栈的关系
      • 4.10.2 哈希表
      • 4.10.3 双指针算法
        • 4.10.3.1 双指针算法实战
        • 4.10.3.2 双指针进阶:滑动窗口算法
      • 4.10.4 字符串匹配 KMP算法
        • 4.10.4.1 字符串匹配B-M算法
      • 4.10.5 快速傅里叶变换
      • 4.10.6 回溯算法
      • 4.10.7 动态规划
      • 4.10.8 分治算法
      • 4.10.9 Dijkstra算法
  • 5 第六单元: systemview通信仿真
    • 5.1 SystemView概述
    • 5.2 模拟通信系统 数字系统的仿真分析
    • 5.3 SystemView通信系统仿真进阶
    • 5.4 新建课程目录
  • 6 第四单元:MATLAB高级应用
    • 6.1 符号运算基础
      • 6.1.1 利用Matlab自动推导公式
    • 6.2 Matlab中的数值计算
      • 6.2.1 积分的计算
      • 6.2.2 龙格库塔:常微分方程的数值解法
      • 6.2.3 fmincon函数与非线性方程最小值
    • 6.3 统计、拟合、插值
      • 6.3.1 协方差与相关系数
    • 6.4 GUI设计初步
    • 6.5 matlab GUI界面编程
      • 6.5.1 gui实例
      • 6.5.2 gui编程中常用函数
      • 6.5.3 App Designer入门
    • 6.6 实验:GUI设计图像空间变换系统
    • 6.7 作业:利用GUI设计 计算器、信号发生器等
    • 6.8 MTALB数据导入方法
    • 6.9 课外补充:MATLAB的App会取代GUI吗?
    • 6.10 模拟退火算法matlab实现
    • 6.11 遗传算法的Matlab实现
      • 6.11.1 进化算法(Evolutionary Algorithm)及相关函数介绍
    • 6.12 粒子群算法 matlab实现
      • 6.12.1 粒子群算法及MATLAB实例仿真
    • 6.13 BP网络的应用
    • 6.14 matlab 结构体
    • 6.15 群智能算法合集
  • 7 拓展知识
    • 7.1 什么是算法的时间复杂度?
    • 7.2 Notepad++使用教程
    • 7.3 MATLAB常用函数总结
    • 7.4 MATLAB常用知识点总结
    • 7.5 MATLAB命令大全
    • 7.6 视频:MATLAB官方基础教程
    • 7.7 经典书籍:Matlab2012经典超强教程
    • 7.8 经典书籍:MATLAB揭秘(自学宝典)
    • 7.9 经典资料:MATLAB N个实用技巧
    • 7.10 Matlab编程小技巧
    • 7.11 寻优算法
      • 7.11.1 Dijkstra算法python实现
    • 7.12 PYTHON基础教程
      • 7.12.1 Python进阶
      • 7.12.2 Python小技巧
      • 7.12.3 Python总结
        • 7.12.3.1 Python循环语句总结
        • 7.12.3.2 24个顶级Python库
        • 7.12.3.3 魔法函数
      • 7.12.4 廖雪峰python
      • 7.12.5 正则表达式基础
      • 7.12.6 numpy
        • 7.12.6.1 101道Numpy习题
        • 7.12.6.2 Numpy简要语法教程
        • 7.12.6.3 Numpy实现全连接神经网络 (手写数字识别)
        • 7.12.6.4 图解NumPy
      • 7.12.7 matplotlib
        • 7.12.7.1 matplotlib练习50题
        • 7.12.7.2 Matplotlib速查表
        • 7.12.7.3 Matplotlib 实操指南
      • 7.12.8 Python3 模块 import
      • 7.12.9 Python 小项目
    • 7.13 参考资源:数据结构与算法
      • 7.13.1 十大经典排序算法总结
    • 7.14 机器学习概述
      • 7.14.1 反向传播算法
        • 7.14.1.1 反向传播的数学原理
      • 7.14.2 极大似然估计
        • 7.14.2.1 极大似然估计与最小二乘法
      • 7.14.3 Batch Normalization
        • 7.14.3.1 Batch Normalization&Dropout浅析
        • 7.14.3.2 ​BN层的梯度反向传播计算
        • 7.14.3.3 Batch Size的大小与神经网络的性能
        • 7.14.3.4 标准化和归一化
      • 7.14.4 主成分分析PCA与SVD奇异值分解
        • 7.14.4.1 岭回归 与 PCA
        • 7.14.4.2 PCA原理推导
        • 7.14.4.3 PCA原理新解
        • 7.14.4.4 svd
        • 7.14.4.5 PCA数学原理
      • 7.14.5 正则化
        • 7.14.5.1 L1、L2正则化和过拟合 总结
        • 7.14.5.2 L1 和 L2 正则化的直观解释
      • 7.14.6 SVM
        • 7.14.6.1 从零推导支持向量机(SVM)
        • 7.14.6.2 支持向量机(SVM)介绍
        • 7.14.6.3 SVM推导与实战
        • 7.14.6.4 支持向量机的直观理解
        • 7.14.6.5 浅显易懂的支持向量机SVM
      • 7.14.7 线性回归
      • 7.14.8 逻辑回归
      • 7.14.9 BP算法
        • 7.14.9.1 万能逼近——神经网络拟合任意函数原理
      • 7.14.10 激活与池化
        • 7.14.10.1 激活函数与损失函数 小结
      • 7.14.11 深度学习简述
        • 7.14.11.1 MATLAB2020深度学习实例
      • 7.14.12 损失函数与误差反向传播
        • 7.14.12.1 梯度下降与损失函数
      • 7.14.13 深度学习优化问题
      • 7.14.14 梯度下降法
        • 7.14.14.1 各类梯度下降算法的Python实现
        • 7.14.14.2 梯度下降的直观理解
        • 7.14.14.3 动量、RMSProp、Adam
      • 7.14.15 卷积的概念
        • 7.14.15.1 卷积的矩阵化算法
      • 7.14.16 局部连接
      • 7.14.17 RNN
      • 7.14.18 LSTM
      • 7.14.19 CNN-四大经典CNN技术浅析
      • 7.14.20 熵(Entropy)与交叉熵
      • 7.14.21 softmax函数详解
      • 7.14.22 自编码算法详细理解与代码实现
      • 7.14.23 pytorch
        • 7.14.23.1 ​PyTorch简介
          • 7.14.23.1.1 Pytorch快速入门资料
        • 7.14.23.2 CNN的PyTorch实现
        • 7.14.23.3 pytorch总结
        • 7.14.23.4 PyTorch trick 集锦
        • 7.14.23.5 在PyTorch上加载自定义数据集
        • 7.14.23.6 实战:Pytorch识别验证码
        • 7.14.23.7 实战:Transformer的最简洁pytorch实现
        • 7.14.23.8 使用PyTorch实现神经网络分类
      • 7.14.24 卷积神经网络CNN概述
        • 7.14.24.1 CNN 简易原理
        • 7.14.24.2 卷积神经网络CNN原理详解
        • 7.14.24.3 自己手写一个卷积神经网络
        • 7.14.24.4 CNN反向传播算法
        • 7.14.24.5 卷积计算、作用与思想
        • 7.14.24.6 用卷积神经网络CNN识别手写数字集
        • 7.14.24.7 卷积 池化 参数的计算
        • 7.14.24.8 im2col方法实现卷积算法
        • 7.14.24.9 卷积核的梯度计算
        • 7.14.24.10 卷积层反向传播推导及实现
        • 7.14.24.11 反向传输算法
          • 7.14.24.11.1 resnet残差网络
        • 7.14.24.12 CNN反向传播的MATLAB实现
      • 7.14.25 神经网络的调参技巧
      • 7.14.26 BP神经网络
        • 7.14.26.1 零开始搭建bp神经网络
        • 7.14.26.2 MATLAB自带的bp工具箱
        • 7.14.26.3 神经网络中偏置(bias)的作用
      • 7.14.27 聚类分析 k-means
        • 7.14.27.1 matlab做聚类分析(k-means)
        • 7.14.27.2 聚类模型探讨综述
        • 7.14.27.3 5种经典聚类算法
      • 7.14.28 深度学习的一些概念
      • 7.14.29 人工智能简述:AI的过去和现在
      • 7.14.30 k-NN(k近邻算法)
      • 7.14.31 神经网络中的优化器:BGD、SGD、MBGD、Momentum
      • 7.14.32 卷积神经网络的经典网络总结
        • 7.14.32.1 卷积神经网络中十大拍案叫绝的操作
      • 7.14.33 GAN 对抗样本攻击
      • 7.14.34 蒙特卡洛模拟
      • 7.14.35 dropout与随机部分连接
      • 7.14.36 Jupyter 等 IDE概览
      • 7.14.37 分类算法常用评价指标
      • 7.14.38 Inception 网络与不变性
      • 7.14.39 卷积神经网络的可视化
      • 7.14.40 隐马尔可夫模型HMM
        • 7.14.40.1 马尔科夫链
    • 7.15 MATLAB音频处理
      • 7.15.1 python处理音频信号
    • 7.16 图像处理
      • 7.16.1 图像处理中的指标
    • 7.17 代码集
    • 7.18 论文写作与阅读方法
      • 7.18.1 期刊投稿攻略
      • 7.18.2 论文排版教程
      • 7.18.3 SCI-HUB论文下载技巧
      • 7.18.4 几种论文写作神器,提高写作效率
      • 7.18.5 latex入门
      • 7.18.6 LaTeX教程
    • 7.19 机器学习常用的网站以及资源
      • 7.19.1 很详细的ML&DL学习博客
    • 7.20 SymPy 符号计算基本教程
  • 8 程序设计数学基础
    • 8.1 编程数学基础
      • 8.1.1 概率的历史
      • 8.1.2 概率
        • 8.1.2.1 常见概率分布
          • 8.1.2.1.1 二维正态分布
        • 8.1.2.2 蒙特卡罗方法
        • 8.1.2.3 置信区间
        • 8.1.2.4 协方差与相关系数
      • 8.1.3 矩阵 向量求导法则
      • 8.1.4 雅可比矩阵 海森矩阵
      • 8.1.5 矩阵的几种分解方式
      • 8.1.6 行列式和代数余子式
      • 8.1.7 向量
      • 8.1.8 矩阵的基本运算
      • 8.1.9 矩阵分析
      • 8.1.10 矩阵的LU分解
      • 8.1.11 矩阵奇异值分解(SVD)
        • 8.1.11.1 SVD分解2
        • 8.1.11.2 SVD分解逐步推导
        • 8.1.11.3 奇异值与特征值的意义
      • 8.1.12 随机向量
        • 8.1.12.1 随机过程简述
      • 8.1.13 投影矩阵和最小二乘
      • 8.1.14 知乎数学精选集
        • 8.1.14.1 高数问题集
      • 8.1.15 小波变换
      • 8.1.16 程序设计数学基础1:高等数学
      • 8.1.17 程序设计数学基础2:线性代数
      • 8.1.18 程序设计数学基础3:概率论和数理统计
      • 8.1.19 向量的距离与相似度计算
      • 8.1.20 复数
      • 8.1.21 高等数学——幂级数
      • 8.1.22 无穷小的本质
      • 8.1.23 数列极限和收敛性
      • 8.1.24 不定积分技巧总结
    • 8.2 有趣的数学题目
    • 8.3 高等数学
      • 8.3.1 泰勒级数
  • 9 路径规划与智能算法
    • 9.1 常见路径规划算法简介
    • 9.2 Dijkstra算法详细
  • 10 教学文档
    • 10.1 授课计划
    • 10.2 课程标准
机器学习常用的网站以及资源


                      机器学习常用的网站以及资源

机器学习网站导航以及资源共享项目,欢迎PR

网站:mlhub123.com/

github:howie6879/mlhub123

导航

新闻资讯

社区交流

  • DataTau: 人工智能领域的Hacker News

  • PaperWeekly: 一个推荐、解读、讨论和报道人工智能前沿论文成果的学术平台

  • Reddit: Reddit | 机器学习板块

  • Quora: Quora | 机器学习主题

  • AIQ: 机器学习大数据技术社区

  • 极智能: 人工智能技术社区

  • ShortScience: 用最简单的篇幅去概况科学著作

  • MathOverflow: 数学知识问答社区

优质博文

论文检索

比赛实践

  • Kaggle: 为数据科学家提供举办机器学习竞赛

  • KDD-CUP: 国际知识发现和数据挖掘竞赛

  • 天池大数据: 大数据竞赛、大数据解决方案、数据科学家社区、人工智能、机器学习

  • DataCastle: 中国领先的数据科学竞赛平台

  • 赛氪网: 汇集以高校竞赛为主,活动、社区为辅的大学生竞赛活动平台

  • DataFountain: DF,CCF指定专业大数据竞赛平台

  • 滴滴新锐: 滴滴面向全球高校博士、硕士、优秀本科生的精英人才计划

资源

课程学习

开源资源

开源书籍

文档

名库文档

  • TensorFlow: TF官方文档

  • PyTorch: PyTorch官方文档

  • Caffe: 一个基于表达式,速度和模块化原则创建的深度学习框架

  • Keras: Keras官方文档

  • Neon: Nervana公司一个基于Python的深度学习库

  • Chainer: 基于Python的独立的深度学习模型开源框架

  • scikit-learn: scikit-learn官方文档

  • PyBrain: 一个模块化的Python机器学习库

  • Statsmodels: 用来探索数据,估计统计模型,进行统计测试

  • Theano: 允许高效地定义、优化以及评估涉及多维数组的数学表达式

  • Pylearn2: 构建于Theano之上的机器学习库

  • Gensim: 包含可扩展的统计语义,分析纯文本文档的语义结构,以及检索相似语义的文档等功能

  • NumPy: NumPy官方文档

  • pandas: pandas官方文档

  • Matplotlib: Matplotlib官方文档




======================================


                           推荐收藏:AI入门资料整理


一、前言

AI 初学者最大的问题就是:

资料太多!!!看不完!!!不知道如何取舍!!!人的精力有限!!!

我把 公众号创办以来的原创文章进行整理,文章适合本科、硕士以及刚接触机器学习的博士

学完这些文章学完以后,就基本入门了。

入门以后,遇到问题能上网搜索解决了,也知道接下来应该学什么。

本文建议用收藏,利用碎片时间学习。

二、学习路线

这篇文章为初学者提供了入门的路线。包含数学基础、python 入门、机器学习、深度学习、特征工程入门等。并把代码放在了 github 仓库:

github.com/fengdu78/Dat

这篇文章将机器学习的精华部分做成了手册,打开微信就能学习,适合平时时间少的朋友学习机器学习,可以在通勤的时候在手机上学习,建议收藏本文慢慢学习

三、基础知识

上面这篇文章是数学基础,也是以下五篇文章的整合版本,可以在线阅读,也可以根据需要分别阅读。

四、机器学习

原创作品为以下三个:

后来又制作成了在线阅读版本:

机器学习相关

五、深度学习

吴恩达深度学习课程笔记和资源

TensorFlow 入门:

keras 入门:

Pytorch入门:

其他资料

六、Python 相关

七、NLP

八、学术技巧



                  适合初学者入门人工智能的路线及资料下载



本文为AI入门提供了一个简易的学习路线,并提供了代码和数据集下载。(黄海广)


一、前言

AI以及机器学习入门,初学者遇到的问题非常多,但最大的问题就是:

资料太多!!!看不完!!!不知道如何取舍!!!人的精力有限!!!

我曾经写了一篇初学者入门的文章:《机器学习简易入门-附推荐学习资料》,这篇文章给初学者指明了学习的方向,受到广大初学者好评。

在此基础上,结合本站已经发过的文章,以及自己的学习过程,整理出一个AI的入门路线,并整合到一个github仓库,所有代码和数据集都提供了下载方式。

本路线适合本科、硕士以及刚接触机器学习的博士

根据这个github仓库学完以后,就基本入门了。

入门以后,遇到问题能上网搜索解决了,也知道接下来应该学什么。

二、学习路线的github

该仓库拥有者黄海广,致力于帮助机器学习初学者入门,帮助学习者更好地成长。仓库主要内容由黄海广原创,另一部分由其他公益组织创作。

仓库链接:

https://github.com/fengdu78/Data-Science-Notes

你不是一个人在战斗!


三、仓库目录及概述

  • 0.math

    数学基础

  • 1.python-basic 

    python基础

  •  2.numpy

    numpy基础

  •  3.pandas

    pandas基础

  •  4.scipy

    scipy基础

  •  5.data-visualization

    数据可视化基础

  •  6.scikit-learn

    scikit-learn基础

  •  7.machine-learning

    机器学习入门

  •  8.deep-learning

    深度学习入门

  •  9.feature-engineering 

    特征工程入门


四、学习路线说明

这个目录其实是一个学习路线:

0——>1——>2——>3——>4——>5——>6——>7——>8——>9

1-5是个整体,6和7的顺序可以交换也可以同时学习,8属于选学部分(深度学习),9放在最后学习。


五、学习路线和内容

第一部分,数学基础学习:

目录名称:0.math

数学基础:数学基础内容太多,很容易把人劝退,其实先把高等数学、概率论与数理统计和线性代数这三门课学熟了,大部分机器学习问题是能解决的。数学基础部分我放了三个资料。

第一个是当时考研和考博士复习的。数学基础,我把机器学习的部分,提炼出来。

第二、三个是今年刚翻译的CS229的线性代数和概率论,这部分是斯坦福所有人工智能有关的课程的数学基础复习材料,非常实用

这部分内容曾经有文章介绍(查看文章


第二部分,python学习

目录名称:1.python-basic 

python基础:这里有个代码练习:两天入门python

目录名称: 2.numpy

numpy基础:这里有2个代码练习

  • 一、适合初学者快速入门的Numpy实战全集

  • 二、Numpy练习题100题-提高你的数据分析技能

目录名称: 3.pandas

pandas基础:这里有3个代码练习

  • 一、《十分钟搞定pandas》:10-Minutes-to-pandas,这是十分钟搞定pandas 10 minutes in pandas的中文翻译。

  • 二、《pandas练习题》:Pandas_Exercises,这个是pandas的练习题。

  • 三、《pandas入门教程-2天学会pandas》:pandas_beginner

目录名称: 4.scipy

  • scipy基础:scipy的示例代码

目录名称: 5.data-visualization

数据可视化基础:这里有2个代码练习

  • 一、matplotlib学习之基本使用

  • 二、数据可视化的利器-Seaborn简易入门


第三部分,机器学习基础

目录名称:6.scikit-learn

scikit-learn基础:PyParis 2018: Machine learning using scikit-learn的代码翻译(截图如下:)

图:代码截图


目录名称:7.machine-learning

机器学习入门,推荐4份教程,着重推荐1、2部分。

  • 一、斯坦福大学2014(吴恩达)机器学习教程中文笔记及资源

    内容介绍(点击查看文章

  • 二、李航《统计学习方法》的代码实现

    内容介绍(点击查看文章

  • 三、周志华老师的《机器学习》的解答--南瓜书PumpkinBook

    内容介绍(点击查看文章

  • 四、台大林轩田《机器学习基石》系列课程教材的习题解答

    内容介绍(点击查看文章


目录名称:8.deep-learning

深度学习入门,推荐3份教程


目录名称:9.feature-engineering

特征工程入门,这个是项目实战部分。

总结

本文提供了适合初学者入门AI的路线及资料下载,以上内容都整合到一个仓库:

仓库链接:

https://github.com/fengdu78/Data-Science-Notes


==========================================



                       机器学习路线及资料分享


1. 前言

机器学习的基本方法论说简单点就是在已知的数据集中寻找数据的规律,在未知的数据集中寻找数据的关系,为找到样本数据的规律,就需要提取数据的特征,建立模型。


在学习机器学习的过程中,花了很多时间搜集资料,今天就全部整理出来,其中有的是自己正在看的而且觉得好的,有的是别人推荐的,如果你也有觉得很好的资料或开源项目,欢迎留言分享。

交流和分享最能让技术人进步!


2. 学习路线







3. 数学


微积分

《麻省理工学院公开课:单变量微积分

open.163.com/special/sp


线性代数

《麻省理工学院公开课:线性代数》

open.163.com/special/op


概率统计

《可汗学院公开课:概率》

open.163.com/special/Kh

《可汗学院公开课:统计学》
open.163.com/special/Kh


4. Python






5. 机器学习


5.1 机器学习理论

视频:

《机器学习基石》、《机器学习技法》—台湾大学林轩田;

《吴恩达机器学习视频》

coursera.org/learn/mach


书籍:

《统计学习方法》——李航

《机器学习》——周志华

《模式识别与机器学习》


5.2 机器学习实战

书籍:

《Python机器学习及实践_从零开始通往Kaggle竞赛之路》

《机器学习实战》


其他:

GitHub:100天机器学习挑战项目:

github.com/Avik-Jain/10

莫烦视频教程:

morvanzhou.github.io/ab


6. 其他

除了以上介绍的,下面这些资源也很不错


YouTuBe - Google Developer

从hello world讲到如何使用tensorflow

youtube.com/playlist?

用python玩机器学习:

pypythonprogramming.net/m


不错的博客:

iamtrask.github.io/

machinelearningmastery.com


Github上的机器学习与深度学习教程:

github.com/ujjwalkarn/M




Coding Your Ambition!

weixin.qq.com/r/hy6ttUv (二维码自动识别)




===============================================


             机器学习5大数学知识(附详细课程资源)


机器学习理论是一个涵盖统计、概率、计算机科学和算法方面的领域,该理论的初衷是以迭代方式从数据中学习,找到可用于构建智能应用程序的隐藏洞察。

尽管机器学习和深度学习有巨大的发展潜力,但要深入掌握算法的内部工作原理并获得良好的结果,就必须透彻地了解许多技术的数学原理。

为什么学习数学?

机器学习的数学原理很重要,下面重点介绍部分原因:

  1. 选择正确的算法,这涉及到考虑准确率、训练时间、模型复杂性、参数数量和特征数量。

  2. 选择参数设置和验证策略。

  3. 通过理解偏差-方差权衡,识别欠拟合和过拟合。

  4. 估算正确的置信区间和不确定性。

多高的数学知识水平?

在尝试理解诸如机器学习这样的跨学科领域时,需要考虑的主要问题是,理解这些技术需要多大的数学知识量和多高的数学知识水平。此问题的答案涉及多个维度,而且取决于个人的知识水平和兴趣。对机器学习的数学公式和理论发展的研究从未间断过,一些研究人员正在研究更高级的技术。下面介绍成为机器学习工程师所需的最低数学知识水平,每个数学概念的重要性,以及相应的学习资源。

有哪些数学知识?

结语

最后,这些数学知识绝对能在优化你的你的机器学习算法中发挥巨大的作用,当然你也不必学习每一个细节。上面的课程仅作参考,根据自己需要高效学习。