高斯消元法与阶梯型
-
1 视频
-
2 章节测验
上一节
下一节
高斯消元法简介
消元法是将方程组中的一方程的未知数用含有另一未知数的代数式表示,并将其代入到另一方程中,这就消去了一未知数,得到一解;或将方程组中的一方程倍乘某个常数加到另外一方程中去,也可达到消去一未知数的目的。消元法主要用于二元一次方程组的求解。
核心
1)两方程互换,解不变;
2)一方程乘以非零数k,解不变;
3)一方程乘以数k加上另一方程,解不变
阶梯型矩阵简介
一个矩阵成为阶梯型矩阵,需满足两个条件:
(1)如果它既有零行,又有非零行,则零行在下,非零行在上。
(2)如果它有非零行,则每个非零行的第一个非零元素所在列号自上而下严格单调上升。
阶梯型矩阵的基本特征:
如果所给矩阵为阶梯型矩阵则矩阵中每一行的第一个不为零的元素的左边及其所在列以下全为零。
画法
画法1 | 画法2 | 画法3 |
上面的三种阶梯矩阵的画法。图二、图三的最后一列可看为方程的值列。