等价关系
-
1 视频
-
2 章节测验
上一节
下一节
定义
设 R 是集合 A 上的一个二元关系,若R满足:
自反性:∀ a ∈A, => (a, a) ∈ R
对称性:(a, b) ∈R∧ a ≠ b => (b, a)∈R
传递性:(a, b)∈R,(b, c)∈R =>(a, c)∈R
则称R是定义在A上的一个等价关系。设R是一个等价关系,若(a, b) ∈ R,则称a等价于b,记作 a ~ b 。
应用
例一:
同班同学关系、同乡关系是等价关系。
平面几何中三角形间的相似关系、全等关系都是等价关系。
平面几何中直线间的平行关系是等价关系。
例二:
设A = {1, 4, 7},定义A上的关系R如下:
R = { (a, b) | a, b ∈ A∧a ≡ b mod 3 }
其中a ≡ b mod 3叫做 a 与 b 模 3 同余,即 a 除以 3 的余数与 b 除以 3 的余数相等。不难验证 R 为 A 上的等价关系。
设 f 是从 A 到 B 的一个函数,定义 A 上的关系 R :aRb,当且仅当f(a) = f(b),R 是 A 上的等价关系。