线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
商映射与序关系
  • 1 视频
  • 2 章节测验


商映射

设X,Y是两个拓扑空间,映射  称为商映射,如果它是连续的满映射,并且对每个  ,若   是X的开集,则B是Y的开集。

实际上容易看出,商映射即是满足下列两个(等价的)条件之一的满映射  

(1)  是开集   是X的开集;

(2)   是闭集  是X的闭集。

常用命题

关于商映射,有如下一些基本而常用的命题。

命题1 开的(或闭的)连续满映射 是商映射。 

但是这个命题的逆命题并不成立。

命题2 如果X是紧致的,Y是 空间,则连续满映射 是商映射。

证明 只需证明f是闭映射即可,对于x中任一闭子集F,由于X是紧空间,故F是紧子集,从而f(F)是Y的紧子集,由于Y是 空间,故f(F)是闭的,因此f是闭映射。

命题3 商映射的复合映射仍然是商映射。

命题4 若   是商映射.则商空间  与Y同胚。

序关系

偏序关系,亦称序关系、弱偏序关系、半序关系,是一种重要的二元关系。指集合A有自反性、反对称性和传递性的二元关系R,A称为偏序集。偏序关系常用记号≤表示(仍读作小于或等于)。a≤b意即aRb。偏序关系可用符号表示为:R是A的偏序关系。 

定义1,设P是集合,P上的二元关系“≤”满足以下三个条件,则称“≤”是P上的偏序关系(或部分序关系):

(1)自反性:a≤a,∀a∈P;(2)反对称性:∀a,b∈P,若a≤b且b≤a,则a=b;(3)传递性:∀a,b,c∈P,若a≤b且b≤c,则a≤c;

偏序关系有下列特点:

1、对角集;

2、≤ 的矩阵(rij)λ的主对角线上的元素全是1;当 i ≠ j 时,rij·rji = 0,当 rij = rjk = 1时,rik=1;

3、≤ 的箭头图上每一点有一箭头从自己出发而指向自己。如有箭头从a指向b,从b指向c,就有箭头从a指向c,任何两点间无双箭头。

偏序关系的逆关系≥一定是偏序关系,偏序关系一定是拟序关系。1880年,皮尔斯(Perice,C.S.)首先系统地讨论了偏序关系,而关于偏序的术语是由豪斯多夫(Hausdorff,F.)从1914年引进的。