线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
循环群
  • 1 视频
  • 2 章节测验


定义

若—个群G的每—个元都是G的某—个固定元a的乘方,则称G为循环群,记作G=(a)={am |m∈Z},a称为G的—个生成元。

特别地,如果G的代数运算采用加号表示时,则有 (a)={ma | m∈Z}

性质

定理1

设(a)是—个循环群,

(1)若|a|=∞,则(a)与整数加群Z同构;

(2)若IaI=n,则(a)与模几的剩余类加群Zn同构。

证(1)|a|=∞,则当m≠n时,

am≠an,(a)={…,a-2,a-1,e,a1,a2,…}.

于是令 φ:(a)→Z,am→m可以证明这是循环群(a)到整数加群Z的一个双射,且

φ(am·an)=φ(am+n)=m+n=φ(am)+φ(an),

故φ是(a)到Z的一个同构映射,所以(a)≌Z.

(2)设IaI=n,则(a)={e,a,a2,…,an-1}

令 σ:(a)→Zn,am→[m].

若有m,m′∈Z,m′>m使得am=am',则am'-m=e,而an=e,所以n | m'-m,即m'=m(mod n),因此[m′]=[m],故σ是(a)到Zn的—个映射.

又∀[0]≤[k]≤[n-1],有ak∈(a),使得[k]=σ(ak),且若am≠am′,则σ(am)≠σ(am′),同时∀am、am′∈(a),

σ(am·am')=σ(am+m')

=[m+m′]=[m]+[m′]

=σ(am)+σ(am′),

所以σ是(a)到Zn的一个同构映射,即(a)≌Zn。

由于群之间的同构关系具有反身性、对称性和传递性,故这个定理告诉我们,凡无限循环群都彼此同构,凡有限同阶循环群都彼此同构,而不同阶的群,由于不能建立双射,当然不能同构。这样抽象地看,即在同构意义下,循环群只有两种,即整数加群和模n的剩余类加群.

定理2

有且仅有两个元1和-1可以作为整数加群Z的生成元,且在Z中除零元外,每个元的阶都是无限的.

证 已证1和-1可以作为整数加群Z的生成元,如果另有k是生成元,则(k)=(1)=Z,这时由1∈(k)={km,m∈Z},即存在m∈Z,使1=km,于是k=m=±1,所以只有两个元1与-1可以作为整数加群Z的生成元。

若k∈Z,k≠0,则∀m,n∈Z,m≠n,有mk≠nk,所以IkI=∞

说明,有且仅有两个元a与a-1可以作为无限循环群(a)的生成元,在无限循环群(a)中除单位元的阶是1以外,其余元的阶都是无限的.

定理3

在模n的剩余类Zn中,有

(1)|[k]|=n/(k,n)

(2)[k]是Zn的生成元<=>(k,n)=1.

证 (1)由定理可得。

(2)若[k]∈Zn,则([k])⊆Zn,由(1)与(k,n)=1知|[k]|=n,所以|([k])|=n,Zn=([k])

反之,设[k]是Zn的生成元,有([k])=Zn,所以|([k])|=n,由(1)知(k,n)=1.

此定理说明|(a)| =n时,(ak)=(a)<=>(k,n)=1。