线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
共轭
  • 1 视频
  • 2 章节测验


基本概念

共轭复数

两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作  (z上加一横,英文中可读作Conjugate z,z conjugate or z bar),有时也可表示为   。

根据定义,若z=a+ib(a,b∈R),则  =a-ib(a,b∈R)。在复平面上,共轭复数所对应的点关于实轴对称。

共轭根式

   都是有理根式,而   、   中至少有一个是无理根式时,称   和   互为“共轭根式”。由平方差公式,这两式的积为有理式

共轭双曲线

以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,如双曲线H:   与 双曲线H':  叫做一对共轭双曲线(a>0,b>0)。

主要性质有:它们有共同的渐近线,它们的四个焦点共圆,它们的离心率的倒数的平方和等于1。

共轭矩阵

共轭矩阵又称Hermite阵。Hermite阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。

 

共轭转置

把矩阵转置后,再把每一个数换成它的共轭复数。

共轭水深

水跃中,跃前水深与跃后水深的互称或共称。

共轭剪节理

在构造地质学中存在共轭剪节理  。

定义

两向量间的一种特殊关系。设A为n×n对称正定矩阵,向量p,p∈R。若满足条件(p)Ap=0,则称p和p关于A是共轭方向,或称p和p关于A共轭。一般地,对于非零向量组p,p,…,p∈R,若满足条件:(p)Ap=0(i≠j,i,j=1,2,…,n),则称该向量组关于A共轭。

共轭方向法

以一组共轭方向作为搜索方向来求解无约束非线性规划问题的一类下降算法。是在研究寻求具有对称正定矩阵Q的n元二次函数

f(x)=1/2xQ x+bx+c

最优解的基础上提出的一类梯度型算法,包含共轭梯度法和变尺度法。根据共轭方向的性质,依次沿着对Q共轭的一组方向作一维搜索,则可保证在至多n步内获得二次函数的极小点。共轭方向法在处理非二次目标函数时也相当有效,具有超线性的收敛速度,在一定程度上克服了最速下降法的锯齿形现象,同时又避免了牛顿法所涉及的海色(Hesse) 矩阵的计算和求逆问题。对于非二次函数,n步搜索并不能获得极小点,需采用重开始策略,即在每进行n次一维搜索之后,若还未获得极小点,则以负梯度方向作为初始方向重新构造共轭方向,继续搜索。