-
1 视频
-
2 章节测验
尺规作图
定义
仅以“有限次使用无刻度的直尺和圆规作图”这样的措辞作为定义显然是不够严密的,因为不限定每“次”以内的操作复杂度的话,“有限次”就成无意义的了。
因此,一般采用的定义是基于“作图公法”的定义,即:
1. 每次的操作只能是公认允许的五项基本操作(称为五项作图公法)之一。
2. 每次操作之前,操作者为决定是否操作和进行哪种操作可以进行的逻辑判断,也只能是几何学中公认允许的几种。
基于“作图公法”的定义如下:
尺规作图定义
承认以下五项前提,有限次运用以下五项公法而完成的作图方法,就是合法的尺规作图:
五项前提是:
(1) 允许在平面上、直线上、圆弧线上已确定的范围内任意选定一点(所谓“确定范围”,依下面四条的规则)。
(2) 可以判断同一直线上不同点的位置次序。
(3) 可以判断同一圆弧线上不同点的位置次序。
(4) 可以判断平面上一点在直线的哪一侧。
(5) 可以判断平面上一点在圆的内部还是外部。
五项公法是:
(1) 根据两个已经确定的点作出经过这两个点的直线。
(2) 以一个已经确定的点为圆心,以两个已经确定的点之间的距离为半径作圆。
(3) 确定两个已经做出的相交直线的交点。
(4) 确定已经做出的相交的圆和直线的交点。
(5) 确定已经做出的相交的两个圆的交点。
也有些资料上给出的五项公法的后两条中的“交点”改为“公共点”。这两种叙述差别在于后者多包括了“切点”。但是,因为确定切点即使不算基本操作,也是可以用其它基本操作组合实现的。所以,两种叙述的定义并无本质不同。
八种基本作图
1、作一条线段等于已知线段
2、作一个角等于已知角
3、作已知线段的垂直平分线
4、作已知角的角平分线
5、过一点作已知直线的垂线
6、已知三边作三角形
7、已知两角、一边作三角形
8、已知一角、两边作三角形
基本方法
以下是尺规作图中可用的基本方法,也称为作图公法,任何尺规作图的步骤均可分解为以下五种方法:
1、通过两个已知点可作一直线。
2、已知圆心和半径可作一个圆。
3、若两已知直线相交,可求其交点。
4、若已知直线和一已知圆相交,可求其交点。
5、若两已知圆相交,可求其交点。