-
1 视频
-
2 章节测验
最大公因子
最大公因子又称最大公约数(英语:greatest common divisor,gcd),指两个或多个整数共同具有的最大约数,记为 或 。
求两个整数最大公约数主要的方法:
穷举法:分别列出两整数的所有约数,并找出最大的公约数。
素因数分解:分别列出两数的素因数分解式,并计算共同项的乘积。
短除法:两数除以其公同素因数,直到两数互素时,所有除数的乘积即为最大公约数。
辗转相除法:两数相除,取余数重复进行相除,直到余数为{\displaystyle 0}时,前一个除数即为最大公约数。
两个整数{\displaystyle a,b}的最大公约数和最小公倍数(lcm)的关系为:
两个整数的最大公约数可用于计算两数的最小公倍数,或分数化简成最简分数。
两个整数的最大公约数和最小公倍数中存在分配律:
在直角坐标中,两顶点为 的线段会通过 个格子点。
最小公倍元
几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。
自然数a、b的最小公倍数可以记作[a,b],自然数a、b的最大公因数可以记作(a、b),当(a、b)=1时,[a、b]= a×b。如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
最小公倍数的适用范围:分数的加减法,中国剩余定理(正确的题在最小公倍数内有解,有唯一的解)。 因为,素数是不能被1和自身数以外的其它数整除的数;素数X的N次方,是只能被X的N及以下次方,1和自身数整除。所以,给最小公倍数下一个定义:S个数的最小公倍数,为这S个数中所含素因子的最高次方之间的乘积。
例如:1,求756,4400,19845,9000的最小公倍数?
因756=2*2*3*3*3*7,4400=2*2*2*2*5*5*11,19845=3*3*3*3*5*7*7,9000=2*2*2*3*3*5*5*5,这里有素数2,3,5,7,11.2最高为4次方16,3最高为4次方81,5最高为3次方125,7最高为2次方49,还有素数11。得最小公倍数为16*81*125*49*11=87318000.2,自然数1至50的最小公倍数,因为,√50≈7,所以,在50之内的数只有≤7的素数涉及N次方。在50之内,2的最高次方的数为32,3的最高次方的数为27,5的最高次方的数为25,7的最高次方的数为49,其余为50之内的素数。所以,1,2,3,4,5,6,…,50的最小公倍数为:32*27*25*49*11*13*17*19*23*29*31*37*41*43*47=3099044504245996706400