线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
整环的分式域
  • 1 视频
  • 2 章节测验


描述

在数学中,更具体地说在抽象代数和环理论中,欧几里德域(也称为欧几里得环)是一个可以赋予欧几里德函数(下面解释的)的交换环,其允许整数的欧几里德分割的适当泛化。这种广义欧几里德算法可以与欧几里德原始算法在整数环中保持许多相同的用途:在任何欧几里德域中,可以应用欧几里德算法来计算任意两个元素的最大公约数。特别地,任何两个元素的最大公约数存在并且可以被写成它们的线性组合(Bézout的身份)。欧几里得域中的每个理想也都是主体,这意味着算术的基本定理的适用泛化:每个欧几里德域都是唯一的因式分解域。

将欧几里德域的类别与较大类的主要理想域(PID)进行比较是很重要的。任意的PID具有与欧几里得域(或甚至整数环)大致相同的“结构性质”,但是当已知欧几里德分割的显式算法时,可以使用欧氏距离算法和扩展欧几里德算法来计算最大的公约数和Bézout的身份。特别地,在计算机代数中存在用于欧几里德整数除法和一个变量中的多项式的有效算法在计算机代数中的基本重要性。

因此,给定一个整数域R,知道R具有欧几里德函数通常是非常有用的:特别是这意味着R是一个PID。然而,如果没有“明显的”欧几里德函数,则确定R是否是PID,通常比确定它是否是欧几里得域容易得多。

定义

一个欧几里得整环是一整环 D 及函数   ,使之满足下述性质:

(1)若   而   ,则存在   使得 a=bq+r,而且或者 r=0,或者 v(r)<v(b)。

(2)若a 整除 b,则   。

函数 v可设想成元素大小的量度,当   时可取 v(x):=|x|。

例子

欧几理得整环的例子包括了:

整数环   。

高斯整数环   。

域上的多项式环( )与幂级数环(v(f) 定义为使  的最大非负整数 n)。

离散赋值环, v(x)定义为使    的最大非负整数n,其中   表该离散赋值环的唯一极大理想。

利用辗转相除法(定义中的第一条性质),可以证明欧几里得环必为主理想环,此时理想由其中 v-值最小的元素生成。由此得到一个推论:欧几里得整环必为唯一分解环。

并非所有主理想环都是欧几里得整环,Motzkin 证明了  的整数环在 d=-19,-43,-67,-163 时并非欧几里得整环,却仍是主理想环。