线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
韦达公式
  • 1 视频
  • 2 章节测验


韦达定理

定义

设一元二次方程   中,两根x₁、x₂有如下关系:

数学推导

由一元二次方程求根公式知:    

则有: 

定理推广

逆定理

如果两数α和β满足如下关系:α+β=  ,α·β= ,那么这两个数α和β是方程   的根。

通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。

推广定理

韦达定理不仅可以说明一元二次方程根与系数的关系,还可以推广说明一元n次方程根与系数的关系。

定理:

   (i=1、2、3、……n)是方程:  的n个根,记   (k为整数),则有: 。

威尔逊定理

证明

充分性

如果“p”不是素数,当p=4时,显然(p-1)!≡6≡2(mod p), 当p>4时,若p不是完全平方数,则存在两个不等的因数a,b使得ab=p,则(p-1)!≡nab≡0(mod p);若p是完全平方数即p=k^2,因为p>4,所以k>2,k,2k<p,(p-1)!≡n(k*2k)≡n'k^2≡0(mod p)。

必要性

若p是素数,取集合 A={1,2,3,...p -1}; 则A 构成模p乘法的缩系,即任意i∈A ,存在j∈A,使得:

( i j ) ≡ 1 ( mod p )那么A中的元素是不是恰好两两配对呢? 不一定,但只需考虑这种情况

x^2 ≡ 1 ( mod p )

解得: x ≡ 1 ( mod p ) 或 x ≡ p - 1 ( mod p )

其余两两配对;故而

( p - 1 )! ≡ 1﹡( p -1 ) ≡ -1 ( mod p )

必要性证明

证明:若p为质数,则p可整除(p-1)!+1。

方法一

p=2,命题显然成立;

p=3,命题显然成立;

假设B中被p除余一的数是γa:

一若γ=1,则γa=a,它被p除余a,又因为a不等于1,所以γ=1不成立;

二若γ=p-1,则γa=(p-1)a,它被p除余p-a,又因为a不等于p-1,所以γ=p-1不成立;

由一二三知γ≠a且a,γ∈A。

a不同时,γ也相异;若a1≠a2, a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2。

即A中的每一个a均可找到与其配对的y,γ∈A使ay≡1(mod p),

又,a不同时,γ也相异。

因此,A中的偶数个(p-3个)元素可以分成(p-3)/2个二元组(a,y),每个二元组都满足ay≡1(mod p),

∴ 1×2×3×4....(p-2)≡1(mod p)

p-1≡-1(mod p)

∴ (p-1)!≡-1(mod p)

从而p可整除(p-1)!+1

方法二

对于偶质数2,命题显然成立;

对于奇质数,令a∈A={2,3,4.....p-2},则B={a,2a,3a,.....,(p-1)a}中不会有对于除数p同余的两个数;事实上αa,βa∈B,αa≡βa(mod p),则a|α-β|能被p整除,而a|α-β|∈B,B中的元素不可能被p除尽。于是B中被p除得的余数形成集合{1,2,3,...,p-1}.

假设b中被p除余一的数是γa:

一若γ=1,则γa=a,它被p除余a,所以γ=1不成立;

二若γ=p-1,则γa=(p-1)a,它被p除余a,所以γ=p-1不成立;

三若γ=a,则γa=a*a,由于a*a≡1(mod p),故应有a*a-1=(a+1)(a-1)≡0(mod p),这只能是a=1或a=p-1,此与a∈A矛盾,故不成立;

由一二三知γ≠a且a∈A。

a不同时,γ也相异;若a1≠a2, a1,a2∈A,且γa1≡γa2≡1(mod p),因,γa1,γa2∈B,而B中的元素关于mod p不同余,可见a1≠a2,则γ1≠γ2。

依次取a为2,3,...,(p-1)/2;使γa≡1(mod p)的数γ分别为(p-1)/2+1,(p-1)/2+2,...,(p-1)/2,

即2*【(p-1)/2+1】≡3*【(p-1)/2+2】≡4*【(p-1)/2+3】≡...【(p-1)/2】*(p-2)≡1(mod p)

从而2*【(p-1)/2+1】*3*【(p-1)/2+2】*4*【(p-1)/2+3】*...*【(p-1)/2】*(p-2)≡1(mod p)

2*3*4*5*6*...*(p-2)≡1(mod p)

又p-1≡-1(mod p),则

(p-1)!=1*2*3*4*5*...*(p-2)*(p-1)≡-1(mod p)

从而p可整除(p-1)!+1