-
1 视频
-
2 章节测验
所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。
定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式
就是一个实系数多项式,如果z是q(z )的根,那么z或它的共轭复数就是p (z )的根。
许多非代数证明都用到了“增长引理”:当|z |足够大时,首系数为1的n 次多项式函数p (z )的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z | > R时,就有:
复分析证明
证明一
寻找一个中心为原点,半径为r的闭圆盘D,使得当|z | ≥ r 时,就有|p (z )| > |p(0)|。因此,|p(z)|在D内的最小值(一定存在,因为D是紧致的),是在D 的内部的某个点z0取得,但不能在边界上取得。于是,根据最小模原理,p(z0) = 0。也就是说,z0是p(z )的一个零点(根)。
证明二
由于在D之外,有|p(z)| > |p(0)|,因此在整个复平面上,|p(z )|的最小值在z0取得。如果|p(z0)| > 0,那么1/p在整个复平面上是有界的全纯函数,这是因为对于每一个复数z,都有|1/p(z)| ≤ |1/p(z0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/p是常数,因此p是常数。于是得出矛盾,所以p(z0) = 0。
证明三
这个证明用到了辐角原理。设R 为足够大的正实数,使得p(z)的每一个根的绝对值都小于R;这个数一定存在,因为n 次多项式函数最多有n 个根。对于每一个r >R,考虑以下的数:
其中c(r )是中心为0,半径为r的逆时针方向的圆;于是辐角原理表明,这个数是p( z )在中心为0、半径为r的开圆盘内的零点的数目N,由于r > R,所以它也是p(z)的零点的总数目。另一方面,n/z沿着c(r )的积分除以2πi,等于n。但这两个数的差为:
被积分的有理表达式中的分子,次数最多是n 1,而分母的次数是n + 1。因此,当r趋于+∞时,以上的数趋于0。但这个数也等于N n,因此有N = n。
证明四
这个证明结合了线性代数和柯西积分定理。为了证明每一个n > 0次复系数多项式都有一个根,只需证明每一个方块矩阵都有一个复数特征值。证明用到了反证法。
设A为大小n > 0的方块矩阵,并设In为相同大小的单位矩阵。假设A没有特征值。考虑预解函数
它在复平面上是亚纯函数,它的值位于矩阵的向量空间内。A 的特征值正好是R( z ) 的极点。根据假设,A没有特征值,因此函数R( z ) 是整函数,根据柯西积分定理可知:
另一方面,把R(z)展开为几何级数,可得:
这个公式在半径为||A||的闭圆盘的外部(A的算子范数)成立。设r > ||A||。那么:
(仅当k = 0时,积分才不等于零)。于是得出矛盾,因此A一定有一个特征值。
拓扑学证明
设 为使|p(z)|在 取得最小值的数; 从用到刘维尔定理的证明中,可以看到这样一个数一定存在。我们可以把p(z)写成z z0的多项式:存在某个自然数k和一些复数 ,使得 ,以及:
可推出如果a是 的一个k重根,且t是足够小的正数,那么|p(z0 + ta)| < |p(z0)|,这是不可能的,因为|p(z0)|是|p|在D内的最小值。
对于另外一个用到反证法的拓扑学证明,假设p(z)没有根。选择一个足够大的正数R,使得对于|z| = R,p(z)的第一项z大于所有其它的项的和;也就是说,|z| > |an 1z + ··· + a0|。当z依逆时针方向绕过方程为|z| = R的圆一次时,p(z),像z那样,依逆时针方向绕过零n次。在另外一个极端,|z| = 0时,“曲线” p(z)仅仅是一个(非零的)点p(0),它的卷绕数显然是0。如果z所经过的回路在这两个极端中被连续变形,那么p(z)的路径也连续变形。我们可以把这个变形记为 ,其中t大于或等于0,而小于或等于1。如果我们把变量t视为时间,那么在时间为零时,曲线为p(z),时间为1时,曲线为p(0)。显然在每一个点t,根据原先的假设p(z)都不能是零,因此在变形的过程中,曲线一直都没有经过零。因此曲线关于0的绕数应该不变。然而,由于绕数在一开始是n,结束时是0,因此得出矛盾。所以,p(z)至少有一个根。
代数证明
这个证明需要依赖实数集的如下事实:正实数R在 上有实平方根,以及任何奇次多项式在 上有一个根(这可以用介值定理证明)。
首先 。经过简单的计算可以证明 在开平方运算下是封闭的(利用事实1)。结合 。得出 不存在二阶扩张。由于 ,于是任何 的扩张都是可分的,从而任何 的代数扩张都可以被包含在一个伽罗瓦扩张内。假设 是一个伽罗瓦扩张。考虑伽罗瓦群 的西罗2-子群H。那么 是奇数。由本原元定理得出,K存在本原元 ,它的极小多项式是奇次的。但是利用实数集的事实2,任何奇次数多项式在实数上有一个根,于是不存在奇次的且次数>1的不可约多项式。于是 是2的幂次。
假设 并且r>0,再次利用西罗定理,G存在一个阶为2的子群N。这时 。这和 先前不存在二阶扩张矛盾。因此 的任何代数扩张都是本身,代数基本定理得证。