线性代数

张玮

目录

  • 1 线性方程组
    • 1.1 线性方程组的基本概念
    • 1.2 高斯消元法与阶梯型
    • 1.3 线性方程组的等价与初等变换
    • 1.4 矩阵
    • 1.5 齐次线性方程组
    • 1.6 二阶行列式
    • 1.7 三阶行列式
  • 2 集合与映射
    • 2.1 集合的基本概念
    • 2.2 集合之间的运算
    • 2.3 集合的乘积和基数
    • 2.4 映射的基本概念
    • 2.5 映射的合成
    • 2.6 逆映射
    • 2.7 对换
    • 2.8 置换的分解
    • 2.9 例子
    • 2.10 置换的符号
    • 2.11 偶置换与奇置换
    • 2.12 置换在函数上的作用
    • 2.13 等价关系
    • 2.14 商映射与序关系
    • 2.15 数学归纳法
    • 2.16 整数的算术(上)
    • 2.17 整数的算术(下)
  • 3 矩阵
    • 3.1 向量和向量空间
    • 3.2 线性组合和线性相关
    • 3.3 一些性质
    • 3.4 基
    • 3.5 维数
    • 3.6 行秩、列秩的定义及性质
    • 3.7 线性方程组的可解性准则
    • 3.8 重新理解线性方程组
    • 3.9 线性映射
    • 3.10 矩阵的运算
    • 3.11 矩阵乘积的秩
    • 3.12 矩阵的转置
    • 3.13 单位矩阵和纯量矩阵
    • 3.14 可逆矩阵
    • 3.15 一些计算
    • 3.16 初等矩阵
    • 3.17 逆矩阵的计算
    • 3.18 线性方程组的解空间
    • 3.19 解空间的基础解系
  • 4 行列式
    • 4.1 平行六面体的体积与行列式
    • 4.2 行列式的若干性质
    • 4.3 广义行列式函数
    • 4.4 行列式按一行或一列的元素展开
    • 4.5 准三角方阵的行列式
    • 4.6 方阵乘积的行列式
    • 4.7 例子
    • 4.8 可逆矩阵的行列式判别准则
    • 4.9 克拉默法则
    • 4.10 矩阵的子式与矩阵的秩的联系
  • 5 群、环、域
    • 5.1 运算
    • 5.2 结合律的性质
    • 5.3 幂与倍数
    • 5.4 可逆元素
    • 5.5 群的定义和例子
    • 5.6 循环群
    • 5.7 元素的阶
    • 5.8 循环群的子群
    • 5.9 同态与同构
    • 5.10 例子与结论
    • 5.11 半群的乘法表以及群与对称
    • 5.12 环的定义和例子
    • 5.13 整数的剩余类环
    • 5.14 零因子、整环
    • 5.15 同态
    • 5.16 域的定义,例子
    • 5.17 素域
    • 5.18 域的特征
    • 5.19 任意域上的线性方程组
  • 6 复数和多项式
    • 6.1 复数域
    • 6.2 矩阵模型
    • 6.3 复平面、棣莫弗公式
    • 6.4 共轭
    • 6.5 实数域二次扩张的唯一性
    • 6.6 有理数域的二次扩张
    • 6.7 复数的初等几何
    • 6.8 尺规作图与二次扩张
    • 6.9 定义
    • 6.10 一些术语
    • 6.11 多项式的取值
    • 6.12 带余除法
    • 6.13 多元多项式
    • 6.14 多元单项式的字典序
    • 6.15 若干术语
    • 6.16 整除的初等性质
    • 6.17 最大公因子和最小公倍元
    • 6.18 欧几里得环的唯一因子分解性
    • 6.19 整系数多项式的因式分解
    • 6.20 整环的分式域
    • 6.21 欧几里得环的分式域
    • 6.22 有理函数域
  • 7 多项式的根
    • 7.1 根与线性因子
    • 7.2 韦达公式
    • 7.3 多项式的导数与根的重数
    • 7.4 重因子
    • 7.5 多项式函数
    • 7.6 代数基本定理的叙述和一些引理
    • 7.7 代数基本定理的证明
    • 7.8 实系数多项式的虚根
    • 7.9 复数域和实数域上的最简分式
    • 7.10 实系数多项式的根(上)
    • 7.11 实系数多项式的根(中)
    • 7.12 实系数多项式的根(下)
    • 7.13 斯图姆定理的证明
    • 7.14 正根的个数与系数的关系
    • 7.15 多项式根的近似计算
    • 7.16 整系数多项式的有理根
    • 7.17 对称多项式的定义与例子
    • 7.18 对称多项式的基本定理
    • 7.19 待定系数法
    • 7.20 一元四次方程的求根问题
    • 7.21 判别式
    • 7.22 解三次方程
    • 7.23 结式(上)
    • 7.24 结式(下)
  • 8 复习
    • 8.1 复习(一)
    • 8.2 复习(二)
    • 8.3 复习(三)
    • 8.4 复习(四)
  • 9 阅读
    • 9.1 阅读
  • 10 问卷调查
    • 10.1 问卷调查
实系数多项式的根(中)
  • 1 视频
  • 2 章节测验


斯图姆定理(Sturm theorem)

斯图姆定理(Sturm theorem)是确定实系数多项式实根个数的一个重要定理,设f(x)是实系数n(n≥1)次多项式,令f0(x)=f(x),f1(x)=f′(x),则由带余除法,f0(x)=f1(x)q1(x)+r1(x).令f2(x)=-r1(x),对f1(x)与f2(x),由带余除法有f1(x)=f2(x)q2(x)+r2(x),再令f3(x)=-r2(x),并对f2(x)与f3(x)作带余除法,如此继续下去,得多项式序列:f0(x),f1(x),…,fs(x),…,fm(x),称为f(x)的斯图姆序列,斯图姆定理是:设f(x)是实系数多项式,且f(x)无重根,f0(x),f1(x),…,fm(x)是f(x)的斯图姆序列,若a<b,f(a)≠0和f(b)≠0,则序列f0(a),f1(a),…,fm(a)的变号数V(a)与序列f0(b),f1(b),…,fm(b)的变号数V(b)的差V(a)-V(b)恰是f(x)在区间(a,b)内实根的个数,斯图姆(C.-F.Sturm)在1829年的论文《论数字方程解》中,深入地讨论了代数方程根的隔离,引入了斯图姆序列的概念,给出了斯图姆定理。

基本介绍

斯图姆定理是判断实系数多项式方程实根个数的定理。给出实系数多项式方程

f(x)=a0xⁿ+…+an-1x+an=0, a0≠0,令f0(x)=f(x),f1(x)=f′(x),用f1(x)除f0(x)得商q1(x)及余式-f2(x),一般地有fk-1(x)=fk(x)qk(x)-fk+1(x),(k=1,2,…,m),直到fm+1(x)≡0为止,得到m+1个多项式序列 {f0(x),f1(x),…,fm(x)},称为以f0及f1为基的斯图姆序列,当x=a时,{f0(a),f1(a),…,fm(a)}是一个数列。

若其中两个相邻数符号相反就称为一次变号,记此数列变号次数为Va,若f(a)≠0,f(b)≠0,且数列{f0(b),f1(b),…,fm(b)}的变号次数为Vb,则f(x)=0在[a,b]内共有Va-Vb个不相同的实根,设最后非零函数fm(x)没有实根,则f(x)=0的实根都是单根,若fm(x)=0有实根,则这些根都是f(x)=0的重根,其重数为fm(x)=0内的重数加1,这就是斯图姆定理的内容。

当a=-∞,b=+∞时,则得f(x)=0实根个数;当(a,b)内只有一个根且b-a很小,则可解决实根的隔离问题。