工程力学

王元勋

目录

  • 1 绪论
    • 1.1 什么是工程力学
    • 1.2 力学与工程
    • 1.3 学科分类
    • 1.4 基本概念
    • 1.5 基本方法
    • 1.6 章节测验
  • 2 刚体静力学基本概念与理论
    • 2.1 力
      • 2.1.1 刚体、刚体静力学
      • 2.1.2 力的概念
      • 2.1.3 力的合成
      • 2.1.4 力的合成实例
      • 2.1.5 二力平衡公理
    • 2.2 力偶
      • 2.2.1 力偶、力偶矩
      • 2.2.2 力偶的合成
    • 2.3 约束与约束反力
      • 2.3.1 约束与约束力
      • 2.3.2 可确定约束力方向的约束
      • 2.3.3 可确定约束力作用线的约束
      • 2.3.4 可确定作用点的约束
      • 2.3.5 几种常见约束
    • 2.4 受力图
      • 2.4.1 受力图
      • 2.4.2 受力图实例一
      • 2.4.3 受力图实例二
      • 2.4.4 受力图实例三
      • 2.4.5 画受力图步骤
    • 2.5 平面力系的平衡条件
      • 2.5.1 力的平移定理
      • 2.5.2 力对点之矩
      • 2.5.3 平面一般力系的简化
      • 2.5.4 平面力系简化实例
      • 2.5.5 平面力系的平衡条件
      • 2.5.6 力的两个推论
    • 2.6 章节测验
  • 3 静力平衡问题
    • 3.1 平面力系的平衡问题
      • 3.1.1 静力平衡问题
      • 3.1.2 平面力系平衡问题的分析方法
      • 3.1.3 静不定问题的概念
    • 3.2 含摩擦的平衡问题
    • 3.3 平面桁架
      • 3.3.1 平面桁架
      • 3.3.2 节点法
      • 3.3.3 截面法
    • 3.4 空间力系的平衡问题
      • 3.4.1 力在空间坐标轴上的投影
      • 3.4.2 力对轴之矩
      • 3.4.3 力对点之矩与力对轴之矩的关系
      • 3.4.4 空间力系的平衡方程
      • 3.4.5 空间力系平衡问题求解
    • 3.5 章节测验
  • 4 变形体静力学基础
    • 4.1 变形体静力学的一般分析方法
    • 4.2 基本假设
    • 4.3 内力、截面法
      • 4.3.1 内力
      • 4.3.2 截面法
    • 4.4 杆件的基本变形
    • 4.5 杆的轴向拉伸和压缩
      • 4.5.1 理论推导
      • 4.5.2 杆的轴向拉伸和压缩实例
    • 4.6 一点的应力和应变
      • 4.6.1 一点的应力
      • 4.6.2 一点的应变
    • 4.7 变形体静力学分析
    • 4.8 应力集中的概念
    • 4.9 章节测验
  • 5 材料的力学性能
    • 5.1 概述
    • 5.2 低碳钢拉伸应力—应变曲线
      • 5.2.1 低碳钢拉伸应力应变曲线
      • 5.2.2 材料的力学性能指标
    • 5.3 不同材料拉伸压缩时的机械性能
      • 5.3.1 不同材料拉伸的力学性能
      • 5.3.2 不同材料压缩的力学性能
      • 5.3.3 泊松比
    • 5.4 真应力、真应变
    • 5.5 章节测验
  • 6 强度与连接设计
    • 6.1 强度条件和安全系数
    • 6.2 拉压杆件的强度设计
    • 6.3 剪切及其实用计算
      • 6.3.1 工程中剪切问题的特点
      • 6.3.2 剪切的实用强度计算
    • 6.4 挤压及其实用计算
      • 6.4.1 工程中挤压问题的特点
      • 6.4.2 挤压的实用强度计算
    • 6.5 连接件的强度设计
    • 6.6 章节测验
  • 7 流体力、容器
    • 7.1 流体的特征
    • 7.2 静止流体中的压强
      • 7.2.1 流体静压强
      • 7.2.2 静止流体内任一点的压强
    • 7.3 作用在壁面上的流体力
      • 7.3.1 静止流体作用于平壁面上的压力
      • 7.3.2 静止流体作用于曲壁面上的压力
    • 7.4 薄壁容器
      • 7.4.1 圆筒形薄壁压力容器的应力
      • 7.4.2 球形薄壁压力容器的应力
      • 7.4.3 强度条件
    • 7.5 章节测验
  • 8 圆轴的扭转
    • 8.1 扭转的概念和实例
    • 8.2 扭矩与扭矩图
    • 8.3 圆轴扭转时的应力和变形
      • 8.3.1 圆轴扭转的应力公式
      • 8.3.2 扭转圆轴任一点的应力状态
      • 8.3.3 圆轴的扭转变形
    • 8.4 圆轴扭转的强度设计
      • 8.4.1 强度条件和刚度条件
      • 8.4.2 强度和刚度计算
      • 8.4.3 静不定问题
    • 8.5 章节测验
  • 9 梁的平面弯曲
    • 9.1 前言
    • 9.2 用截面法作梁的内力图
    • 9.3 利用平衡微分方程作梁的内力图
      • 9.3.1 梁的平衡微分方程
      • 9.3.2 剪力图、弯矩图的简捷画法
    • 9.4 梁的应力与强度条件
      • 9.4.1 变形几何分析
      • 9.4.2 材料的物理关系
      • 9.4.3 静力平衡条件
      • 9.4.4 平面弯曲时的最大正应力公式及强度条件
      • 9.4.5 矩形截面梁横截面上的切应力
    • 9.5 梁的变形
      • 9.5.1 梁的挠度和转角
      • 9.5.2 梁的挠曲线微分方程
      • 9.5.3 用积分法求梁的变形
      • 9.5.4 弯曲静不定问题
    • 9.6 章节测验
  • 10 应力状态、强度理论与组合变形
    • 10.1 应力状态
      • 10.1.1 平面应力状态的一般分析
      • 10.1.2 极限应力与主应力
      • 10.1.3 广义胡可定理
      • 10.1.4 变形比能
    • 10.2 强度理论简介
      • 10.2.1 引言
      • 10.2.2 关于破坏的强度理论
      • 10.2.3 关于屈服的强度理论
      • 10.2.4 强度理论应用
    • 10.3 组合变形
      • 10.3.1 引言
      • 10.3.2 拉(压)弯组合变形
      • 10.3.3 弯扭组合变形
    • 10.4 章节测验
  • 11 阅读
    • 11.1 阅读
  • 12 调查问卷
    • 12.1 调查问卷
真应力、真应变


真应力、真应变

在由标准试件单轴拉压试验确定材料的应力应变曲线时,应力和应变都是以变形前的几何尺寸(标距长度l0、截面积A0)定义的。它们是工程应力S、工程应变e,且:

  

实际上,一旦作用有载荷,材料在发生纵向伸长的同时,由于泊松效应而使横截面尺寸缩小,真实的应力应当等于轴力除以当时的横截面面积A(而不是原面积A0)。同时,在从0加载到F的过程中,杆的伸长是逐步发生的,对于任一载荷增量dF,应变增量dε等于长度增量dl与当时长度l(不是原长l0)之比,如图5.10所示。

      ---(5-7)

式中,A为试件变形后的截面积,l为变形后的标距长度。

     如前所述,金属材料的塑性体积变化是可以忽略的。在颈缩之前的均匀变形阶段,因为弹性应变小(一般有εe<0.5%),由式(5-6)知弹性体积变化也可以忽略。假定均匀变形阶段体积不变,即有A0l0=A l,则真应力、真应变与工程应力、工程应变有下述关系:

 σ=FN/A=FNl/A0l0=(FN/A0)[( l0+D l)/ l0]=S(1+e)              ---(5-8)

ε=ln(1+e)=ln(l/l0)=ln(A0/A)=ln[1/(1-)]                             ---(5-9)

式中即为面缩率。

讨论

 (5-8) 式可见,σ=S(1+e)S;拉伸时e0,即真应力σ大于工程应力S。二者的相对误差为:

    (σ-S)/S=e

 e越大,(σ-S)越大。e=0.2%时,σS0.2%

  (5-9) 式可见,ε=ln(1+e),因为e是一个小量,展开后得到:

ε=e-e2/2+e3/3· · ·e

即拉伸时真应变ε小于工程应变e。略去三阶小量,可知二者的相对误差为:

e-ε)/e=e/2

e=0.2%时,εe0.1%

由上述分析可知,对于一般工程问题,有ε»e0.01,故σSεe相差不超过1%,二者可不加区别。因此,除特别说明外,本书以后均用σε表示应力与应变。