从物理学看

李学潜

目录

  • 1 导论
    • 1.1 霍金其人
    • 1.2 霍金的主要贡献
    • 1.3 《时间简史》简介
    • 1.4 纪录片《时间简史》节选
  • 2 我们的宇宙图像
    • 2.1 万物理论与宇宙创生
    • 2.2 人类宇宙观的发展
    • 2.3 大爆炸理论
    • 2.4 霍金的物理理论观
    • 2.5 量子引力理论
  • 3 空间和时间
    • 3.1 亚里士多德与牛顿之争
    • 3.2 时间的秘密
    • 3.3 爱因斯坦火车
    • 3.4 光锥
    • 3.5 时空弯曲
    • 3.6 时间变慢
    • 3.7 时空观念的变迁
  • 4 膨胀的宇宙
    • 4.1 多普勒红移与宇宙膨胀
    • 4.2 宇宙是如何膨胀的?
    • 4.3 宇宙始于奇点?
  • 5 不确定性原理
    • 5.1 不确定性原理的提出
    • 5.2 关于量子力学的讨论
    • 5.3 纪录片《量子力学揭秘》节选
  • 6 基本粒子和自然的力
    • 6.1 基本粒子
    • 6.2 自然的力
  • 7 黑洞
    • 7.1 黑洞是如何形成的?
    • 7.2 落入黑洞将怎么样?
    • 7.3 黑洞中的奇点
    • 7.4 黑洞如何被发现?
  • 8 黑洞不是这么黑的
    • 8.1 熵与黑洞
    • 8.2 黑洞辐射
  • 9 宇宙的起源和命运
    • 9.1 宇宙的诞生
    • 9.2 有序世界的诞生
    • 9.3 人存原理
    • 9.4 暴胀理论
  • 10 时间箭头
    • 10.1 三种时间箭头
    • 10.2 关于时间箭头的猜想
  • 11 虫洞和时间旅行
    • 11.1 虫洞
    • 11.2 时间旅行
  • 12 物理学的统一
    • 12.1 大统一理论
    • 12.2 结论
多普勒红移与宇宙膨胀
  • 1 视频
  • 2 章节测验




多普勒效应


   

多普勒效应Doppler effect是为纪念奥地利物理学家及数学家克里斯琴·约翰·多普勒(Christian Johann Doppler)而命名的,他于1842年首先提出了这一理论。

一天,多普勒正路过铁路交叉处,恰逢一列火车从他身旁驰过,他发现火车从远而近时汽笛声变响,音调变尖,而火车从近而远时汽笛声变弱,音调变低。他对这个物理现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的现象。这就是频移现象。因为,声源相对于观测者在运动时,观测者所听到的声音会发生变化。当声源离观测者而去时,声波的波长增加,音调变得低沉,当声源接近观测者时,声波的波长减小,音调就变高。音调的变化同声源与观测者间的相对速度和声速的比值有关。这一比值越大,改变就越显著,后人把它称为多普勒效应


“多普勒效应”的主要内容为物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移blue shift);在运动的波源后面时,会产生相反的效应。波长变得较长,频率变得较低(红移red shift);波源的速度越高,所产生的效应越大。根据波红(蓝)移的程度,可以计算出波源循着观测方向运动的速度。

观察者 (Observer) 和发射源 (Source) 的频率关系为:

 

 

为观察到的频率;

 

为发射源于该介质中的原始发射频率;
  

  

为波在该介质中的行进速度;
  

  

为观察者移动速度,若接近发射源则前方运算符号为 + 号, 反之则为 - 号;
  

  

为发射源移动速度,若接近观察者则前方运算符号为 - 号,反之则为 + 号。

通过这个公式,我们就知道火车接近你的时候音调变化的原因:公式中分子是声音传播速度和观察者速度之和(v+v0),分母是声音传播速度和火车速度之差(v-vs),然后和声源原始频率(

  

)进行乘法运算。观察者接受到的频率

  

比火车笛声的原始频率变高,所以听到的火车鸣笛音调变高。反之,当观察者和火车远离的时候,分子减法运算变小,分母加法运算变大,计算得到的频率比火车鸣笛的原始声音频率变低,故听到音调变低。

声波的多普勒效应也可以用于医学的诊断,也就是我们平常说的彩超。彩超简单的说就是高清晰度的黑白B超再加上彩色多普勒,首先说说超声频移诊断法,即D超,此法应用多普勒效应原理,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率有所改变,此种频率的变化称之为频移,D超包括脉冲多普勒、连续多普勒和彩色多普勒血流图像。彩色多普勒超声一般是用自相关技术进行多普勒信号处理,把自相关技术获得的血流信号经彩色编码后实时地叠加在二维图像上,即形成彩色多普勒超声血流图像。由此可见,彩色多普勒超声(即彩超)既具有二维超声结构图像的优点,又同时提供了血流动力学的丰富信息,实际应用受到了广泛的重视和欢迎,在临床上被誉为“非创伤性血管造影”。