目录

  • 1 序言
    • 1.1 第一节  《微积分》课程简介
    • 1.2 第二节 微积分学习方法
  • 2 第一章 函数
    • 2.1 第一节 预备知识
      • 2.1.1 实数的区间与邻域
    • 2.2 第二节 函数
      • 2.2.1 函数概念与表示
    • 2.3 第三节 反函数
    • 2.4 第四节 函数的几何特性
    • 2.5 第五节 函数的运算
      • 2.5.1 函数的四则运算
      • 2.5.2 函数的复合与分解
    • 2.6 第六节 初等函数
      • 2.6.1 基本初等函数与初等函数
    • 2.7 第七节 经济函数举例
    • 2.8 习题解答(习题1-1and2选解)
    • 2.9 章节测试
    • 2.10 章节必做测验
  • 3 第二章 极限与连续
    • 3.1 第一节 数列的极限
      • 3.1.1 数列及其极限的描述定义
      • 3.1.2 数列极限与子列极限的关系
      • 3.1.3 选学1*——数列极限的分析定义
    • 3.2 第二节 函数的极限
      • 3.2.1 函数在无穷远处的极限
      • 3.2.2 函数在固定点的极限与单侧极限
      • 3.2.3 无穷小量与无穷大量的概念
      • 3.2.4 选学2*——函数极限的分析定义
    • 3.3 第三节 极限的四则运算
      • 3.3.1 极限的四则运算法则及有理分式的极限
    • 3.4 第四节 极限的性质
      • 3.4.1 极限唯一性与应用
      • 3.4.2 极限的有界性和局部有界性
      • 3.4.3 复合函数的极限
      • 3.4.4 极限的保号性
      • 3.4.5 选学3*——数列极限与函数极限的关系
    • 3.5 第五节 两个重要极限
      • 3.5.1 夹逼准则
      • 3.5.2 重要极限I及其应用
      • 3.5.3 单调有界准则
      • 3.5.4 重要极限II及其应用
      • 3.5.5 连续复利
    • 3.6 第六节 无穷小量的性质
      • 3.6.1 无穷小量的运算性质
      • 3.6.2 无穷小量与其他概念的关系性质
    • 3.7 第七节 无穷小量阶的比较
      • 3.7.1 无穷小量阶的比较
      • 3.7.2 等价代换求极限
    • 3.8 第八节 函数连续与间断概念
      • 3.8.1 连续的定义及其等价形式
      • 3.8.2 连续的必要条件与单侧连续
      • 3.8.3 间断点分类与举例
    • 3.9 第九节 函数连续的性质
      • 3.9.1 函数连续的性质
      • 3.9.2 分段函数连续区域
    • 3.10 第十节 闭区间上连续函数的性质
      • 3.10.1 闭区间上的连续函数及其性质
    • 3.11 章节 必做测试
    • 3.12 习题选解
      • 3.12.1 习题1-3and4
      • 3.12.2 习题1-5and678
      • 3.12.3 习题1-9and10
    • 3.13 章节测试
  • 4 第三章 导数与微分
    • 4.1 第一节 导数的概念
      • 4.1.1 导数概念
      • 4.1.2 单侧导数
      • 4.1.3 可导与连续的关系
    • 4.2 第二节 导数的运算法则
      • 4.2.1 导函数
      • 4.2.2 导数的四则运算
      • 4.2.3 反函数求导法与导数公式
    • 4.3 第三节 复合函数求导法和隐函数求导法
      • 4.3.1 复合函数的导数
      • 4.3.2 隐函数求导法
      • 4.3.3 对数求导法
    • 4.4 第四节 高阶导数
      • 4.4.1 高阶导数
      • 4.4.2 几个函数的n阶导数
      • 4.4.3 n阶导数的计算公式
    • 4.5 第五节 函数的微分
      • 4.5.1 微分概念
      • 4.5.2 可导与微分的关系
      • 4.5.3 微分的四则运算
      • 4.5.4 一阶微分形式不变性
    • 4.6 第六节  导数在经济中的应用
      • 4.6.1 边际
      • 4.6.2 弹性
    • 4.7 导数与微分必做测试
    • 4.8 习题选解——疑难问题
      • 4.8.1 习题2-1
      • 4.8.2 习题2-2
      • 4.8.3 习题2-3
      • 4.8.4 习题2-4
      • 4.8.5 习题2-5
    • 4.9 章节测试
  • 5 第四章  微分学应用
    • 5.1 第一节 极值的概念
      • 5.1.1 函数极值的概念及必要条件
    • 5.2 第二节 中值定理
      • 5.2.1 罗尔定理
      • 5.2.2 罗尔定理应用
      • 5.2.3 拉格朗日定理
      • 5.2.4 拉格朗日定理的推论
      • 5.2.5 柯西定理
    • 5.3 第三节 罗比达法则
      • 5.3.1 罗比达法则
      • 5.3.2 几个无穷大量的比较
      • 5.3.3 罗比达法则其它型
    • 5.4 第四节  函数的单调性
    • 5.5 第五节 极值点的充分条件
      • 5.5.1 函数极值的第一充分条件
      • 5.5.2 函数极值的第二充分条件
    • 5.6 第六节 曲线的凹凸性
      • 5.6.1 曲线的凹凸性与拐点
      • 5.6.2 曲线的凹凸性判别
    • 5.7 第七节 曲线的渐近线
    • 5.8 第八节 函数的作图
      • 5.8.1 函数作图
      • 5.8.2 软件作图
    • 5.9 第九节 函数最值的应用
      • 5.9.1 函数的最大值与最小值
      • 5.9.2 函数最值的应用
    • 5.10 测验---必做
    • 5.11 习题选解---
      • 5.11.1 习题3-1and2
    • 5.12 章节测试
  • 6 第五章  不定积分
    • 6.1 第一节 不定积分的概念
    • 6.2 第二节 不定积分的性质
    • 6.3 第三节 基本积分法
    • 6.4 第四节 换元积分法
      • 6.4.1 第一换元法
      • 6.4.2 第二换元法
    • 6.5 第五节 分部积分法
    • 6.6 第六节 简单有理分式的积分
    • 6.7 章节基础练习---必做
    • 6.8 章节测试
  • 7 定积分——链接
    • 7.1 定积分
  • 8 定积分的应用——链接
    • 8.1 定积分的应用
  • 9 微积分(二)复习
    • 9.1 6月15日(1)
    • 9.2 6月15日(2)
  • 10 2019级复习
    • 10.1 历年真题一
    • 10.2 历年真题二
    • 10.3 历年真题三
第二节 微积分学习方法
  • 1
  • 2





 


读书好比走路。不知道去那里干什么,走起路来也没劲儿。读书也是这样,没有目的,读起书来也没兴趣。走路也得有方法,方法对走起路来才省劲儿。读书也是这样,方法得当才能收到好效果。学生在校期间,读书当然应以教科书为主,但是大学生与中小学生不同,还应当去看适合自己的参考书,因为任何一本教科书都不会十全十美。看理工科专业的参考书与看小说不同,一般不需要逐章逐节去看。一是你对于哪个问题还不是很懂,就需要看一看其它书上是如何讲这个问题的;二是你想深入研究哪个问题,就需要在教师的指导下,去找一本有关的参考书针对你那个问题去看。有些学生遇到不会做的习题,喜欢马上去问其他同学或老师,这不是一种好习惯。你应先独立思考,实在不会做时,再去看这本学习指导书中的提示或题解。有些习题的解法不是唯一的,你先看过别人的题解会限制你的思路。你经过独立思考后先做一下,然后再看一看本书中的解法。或者你的解法比书上的解法更好,或者你的解法不如书上的解法好,甚至有错误(如计算有误或推理中有逻辑错误)。即使后者,你再与书上的解法对比一下,有错误时把错误纠正过来。这样,你在学习中才会收到更好的效果。  

在上一世纪五、六十年代,数学专业有专门教学生做习题的习题课,其它理工科的许多专业也安排有固定时间的高等数学辅导课。现在,由于课堂教学时数的减少,以前那种教学形式在很多学校都已经不存在了。考虑到这种教学形式的改变和为了帮助学生做习题,教科书中在适当的地方也讲了学习微积分的方法,并为许多习题做出了提示或解答。微积分的习题成千上万,有些习题可能是从后继专业课程或论文中摘选出来的,你暂时不会做它是正常现象,不足为奇。做计算题时有答案可以核对一下,而做证明题时,没有答案(有的题会有提示),这与做计算题相比要困难一点。不过,它们也不会太难,因为它们都是教科书中相关章节之后的练习,那一定是让你用该章节的概念和结论,有时还需要你通过(与学过的其它知识的)联想,运用推理来完成它。评判一个证明(论证),当然要先看其中是否有逻辑错误(“东拉西扯张冠李戴指鹿为马”)。写得太多(舍近求远拐弯抹角)或写得太少(理由不充足)都不算是一个好的证明。  

教科书中的习题大体上分为三类:一是为提高你的熟练程度而编选的习题(譬如求极限、导数、微分和积分的一般习题);二是为培养你的联想和应用能力而编选的习题;三是少数附加题(题首加有星号“*”,教科书中都有提示或解答)。对于那些比较一般(不带有任何技巧)的习题,你在草纸上演算一下就行了,而对于那些你认为是有保留价值的习题,就应当像教科书中的例题或选解那样有规矩地写在作业本或卡片上。  

初学者做微积分习题,一是要多“(多做上述第一类习题,提高熟练程度),二是要多(看有一定技巧性的题解,从中学习做题方法)。