目录

  • 1 序言
    • 1.1 第一节  《微积分》课程简介
    • 1.2 第二节 微积分学习方法
  • 2 第一章 函数
    • 2.1 第一节 预备知识
      • 2.1.1 实数的区间与邻域
    • 2.2 第二节 函数
      • 2.2.1 函数概念与表示
    • 2.3 第三节 反函数
    • 2.4 第四节 函数的几何特性
    • 2.5 第五节 函数的运算
      • 2.5.1 函数的四则运算
      • 2.5.2 函数的复合与分解
    • 2.6 第六节 初等函数
      • 2.6.1 基本初等函数与初等函数
    • 2.7 第七节 经济函数举例
    • 2.8 习题解答(习题1-1and2选解)
    • 2.9 章节测试
    • 2.10 章节必做测验
  • 3 第二章 极限与连续
    • 3.1 第一节 数列的极限
      • 3.1.1 数列及其极限的描述定义
      • 3.1.2 数列极限与子列极限的关系
      • 3.1.3 选学1*——数列极限的分析定义
    • 3.2 第二节 函数的极限
      • 3.2.1 函数在无穷远处的极限
      • 3.2.2 函数在固定点的极限与单侧极限
      • 3.2.3 无穷小量与无穷大量的概念
      • 3.2.4 选学2*——函数极限的分析定义
    • 3.3 第三节 极限的四则运算
      • 3.3.1 极限的四则运算法则及有理分式的极限
    • 3.4 第四节 极限的性质
      • 3.4.1 极限唯一性与应用
      • 3.4.2 极限的有界性和局部有界性
      • 3.4.3 复合函数的极限
      • 3.4.4 极限的保号性
      • 3.4.5 选学3*——数列极限与函数极限的关系
    • 3.5 第五节 两个重要极限
      • 3.5.1 夹逼准则
      • 3.5.2 重要极限I及其应用
      • 3.5.3 单调有界准则
      • 3.5.4 重要极限II及其应用
      • 3.5.5 连续复利
    • 3.6 第六节 无穷小量的性质
      • 3.6.1 无穷小量的运算性质
      • 3.6.2 无穷小量与其他概念的关系性质
    • 3.7 第七节 无穷小量阶的比较
      • 3.7.1 无穷小量阶的比较
      • 3.7.2 等价代换求极限
    • 3.8 第八节 函数连续与间断概念
      • 3.8.1 连续的定义及其等价形式
      • 3.8.2 连续的必要条件与单侧连续
      • 3.8.3 间断点分类与举例
    • 3.9 第九节 函数连续的性质
      • 3.9.1 函数连续的性质
      • 3.9.2 分段函数连续区域
    • 3.10 第十节 闭区间上连续函数的性质
      • 3.10.1 闭区间上的连续函数及其性质
    • 3.11 章节 必做测试
    • 3.12 习题选解
      • 3.12.1 习题1-3and4
      • 3.12.2 习题1-5and678
      • 3.12.3 习题1-9and10
    • 3.13 章节测试
  • 4 第三章 导数与微分
    • 4.1 第一节 导数的概念
      • 4.1.1 导数概念
      • 4.1.2 单侧导数
      • 4.1.3 可导与连续的关系
    • 4.2 第二节 导数的运算法则
      • 4.2.1 导函数
      • 4.2.2 导数的四则运算
      • 4.2.3 反函数求导法与导数公式
    • 4.3 第三节 复合函数求导法和隐函数求导法
      • 4.3.1 复合函数的导数
      • 4.3.2 隐函数求导法
      • 4.3.3 对数求导法
    • 4.4 第四节 高阶导数
      • 4.4.1 高阶导数
      • 4.4.2 几个函数的n阶导数
      • 4.4.3 n阶导数的计算公式
    • 4.5 第五节 函数的微分
      • 4.5.1 微分概念
      • 4.5.2 可导与微分的关系
      • 4.5.3 微分的四则运算
      • 4.5.4 一阶微分形式不变性
    • 4.6 第六节  导数在经济中的应用
      • 4.6.1 边际
      • 4.6.2 弹性
    • 4.7 导数与微分必做测试
    • 4.8 习题选解——疑难问题
      • 4.8.1 习题2-1
      • 4.8.2 习题2-2
      • 4.8.3 习题2-3
      • 4.8.4 习题2-4
      • 4.8.5 习题2-5
    • 4.9 章节测试
  • 5 第四章  微分学应用
    • 5.1 第一节 极值的概念
      • 5.1.1 函数极值的概念及必要条件
    • 5.2 第二节 中值定理
      • 5.2.1 罗尔定理
      • 5.2.2 罗尔定理应用
      • 5.2.3 拉格朗日定理
      • 5.2.4 拉格朗日定理的推论
      • 5.2.5 柯西定理
    • 5.3 第三节 罗比达法则
      • 5.3.1 罗比达法则
      • 5.3.2 几个无穷大量的比较
      • 5.3.3 罗比达法则其它型
    • 5.4 第四节  函数的单调性
    • 5.5 第五节 极值点的充分条件
      • 5.5.1 函数极值的第一充分条件
      • 5.5.2 函数极值的第二充分条件
    • 5.6 第六节 曲线的凹凸性
      • 5.6.1 曲线的凹凸性与拐点
      • 5.6.2 曲线的凹凸性判别
    • 5.7 第七节 曲线的渐近线
    • 5.8 第八节 函数的作图
      • 5.8.1 函数作图
      • 5.8.2 软件作图
    • 5.9 第九节 函数最值的应用
      • 5.9.1 函数的最大值与最小值
      • 5.9.2 函数最值的应用
    • 5.10 测验---必做
    • 5.11 习题选解---
      • 5.11.1 习题3-1and2
    • 5.12 章节测试
  • 6 第五章  不定积分
    • 6.1 第一节 不定积分的概念
    • 6.2 第二节 不定积分的性质
    • 6.3 第三节 基本积分法
    • 6.4 第四节 换元积分法
      • 6.4.1 第一换元法
      • 6.4.2 第二换元法
    • 6.5 第五节 分部积分法
    • 6.6 第六节 简单有理分式的积分
    • 6.7 章节基础练习---必做
    • 6.8 章节测试
  • 7 定积分——链接
    • 7.1 定积分
  • 8 定积分的应用——链接
    • 8.1 定积分的应用
  • 9 微积分(二)复习
    • 9.1 6月15日(1)
    • 9.2 6月15日(2)
  • 10 2019级复习
    • 10.1 历年真题一
    • 10.2 历年真题二
    • 10.3 历年真题三
第三节 罗比达法则

洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作努利法则(Bernoulli's rule)。






基本概念



0/0型不定式极限


若函数和满足下列条件:


函数结构


∞/∞型不定式极限


若函数和满足下列条件:


函数结构


其他类型式极限


函数结构


注意细节


不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。


推导过程


洛必达法则洛必达法则(4)  由于条件皆满足,先令f(a)=F(a)=0。


  再用柯西中值定理进一步证明。


  详细阐述见图。


理解说明


洛必达法则  ⑴本定理所有条件中,对 x→∞的情况,结论依然成立。


  ⑵本定理第一条件中, lim f(x)和 lim F(x)的极限皆为 ∞时,结论依然成立。


  ⑶上述 lim f(x)和 lim F(x)的构型,可精练归纳为 0/0、∞/∞;与此同时,下述构型也可用洛必达法则求极限,只需适当变型推导: 0·∞、∞-∞、1的∞次方、∞的0次方、0的0次方。


应用说明


洛必达法则洛必达法则(3) 求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。


⑴ 在着手求极限以前,首先要检查是否满足或型构型,否则滥用洛必达法则会出错。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。


⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。


⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。


⑷ 洛必达法则常用于求不定式极限。基本的不定式极限:型;型(或),而其他的如型,型,以及型,型和型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。





罗比达法则

拉格朗日中值定理罗比达法则