

洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。

基本概念
0/0型不定式极限
若函数和满足下列条件:
∞/∞型不定式极限
若函数和满足下列条件:
其他类型式极限
注意细节
不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。但此时有形式类近的斯托尔兹-切萨罗定理(Stolz-Cesàro theorem)作为替代。
推导过程
洛必达法则(4) 由于条件皆满足,先令f(a)=F(a)=0。
再用柯西中值定理进一步证明。
详细阐述见图。
理解说明
洛必达法则 ⑴本定理所有条件中,对
x→∞的情况,结论依然成立。
⑵本定理第一条件中, lim f(x)和 lim F(x)的极限皆为 ∞时,结论依然成立。
⑶上述 lim f(x)和 lim F(x)的构型,可精练归纳为 0/0、∞/∞;与此同时,下述构型也可用洛必达法则求极限,只需适当变型推导: 0·∞、∞-∞、1的∞次方、∞的0次方、0的0次方。
应用说明
洛必达法则(3) 求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。
⑴ 在着手求极限以前,首先要检查是否满足或型构型,否则滥用洛必达法则会出错。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。
⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
⑶ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
⑷ 洛必达法则常用于求不定式极限。基本的不定式极限:型;型(或),而其他的如型,型,以及型,型和型等形式的极限则可以通过相应的变换转换成上述两种基本的不定式形式来求解。



