目录

  • 1 Week 1: Course overview [F2F] (第1周:课程概览 [课堂] )
    • 1.1 Instruction (导语)
    • 1.2 Syllabus & Rubrics(教学大纲与评分规则)
    • 1.3 Health policy evaluation and econometrics? (卫生政策评估与计量经济学)
    • 1.4 Peer collaboration: Knowledge points mind map(同伴协作:知识点思维导图)
  • 2 Week 2:Estimator properties [F2F] (第二周:估计量性质 [课堂])
    • 2.1 Instruction (导语)
    • 2.2 Understand the estimation process (理解估计过程)
    • 2.3 Peer collaboration: Knowledge points mind map(同伴协作:知识点思维导图)
  • 3 Week 3: Hypothesis testing [Online] (假设检验 [线上])
    • 3.1 Instruction (导语)
    • 3.2 Hypothesis testing (假设检验)
    • 3.3 Education gradient of health behaviors (健康行为的教育梯度)
    • 3.4 Peer collaboration and Q&A (同伴协作与答疑讨论)
  • 4 Week 4: Selection of control variables [Online] (第3周:控制变量选择 [线上])
    • 4.1 Instruction (导语)
    • 4.2 Model specification (模型设定)
    • 4.3 Confirmatory bias and health decisions (认知偏差与健康决策)
    • 4.4 Peer collaboration and Q&A  (同伴协作与答疑讨论)
  • 5 Week 5: Omitted variable bias and instrumental variable technique [Online] (遗漏变量偏差与工具变量 [线上])
    • 5.1 Instruction (导语)
    • 5.2 Omitted variable bias (遗漏变量偏差)
    • 5.3 IV method (工具变量法)
    • 5.4 Peer collaboration and Q&A  (同伴协作与答疑讨论)
  • 6 Week 6: Vertical case discussions and critiques of instrumental variable technique applications [F2F] (工具变量法应用的纵向案例讨论与品鉴 [课堂])
    • 6.1 Instruction (导语)
    • 6.2 Vertical case discussion (案例纵向讨论)
    • 6.3 News article sharing (学生新闻分享)
  • 7 Week 7: Principles of panel data approaches [online] (面板数据处理方法 [线上])
    • 7.1 Instruction (导语)
    • 7.2 Waiting time and hospital costs (等待时间与医院成本)
    • 7.3 Panel data model: method (面板数据处理方法)
    • 7.4 Peer collaboration and Q&A  (同伴协作与答疑讨论)
  • 8 Week 8: Vertical case discussions and critiques of panel data approaches applications [face-to-face] (面板数据处理方法的纵向案例讨论与品鉴 [课堂])
    • 8.1 Introduction (导语)
    • 8.2 Vertical case discussion (案例纵向讨论)
    • 8.3 News article sharing (学生新闻分享)
  • 9 Week 9: Principles of difference-in-differences model [online] (双重差分模型 [线上])
    • 9.1 Instruction (导语)
    • 9.2 Classical DID model (经典双重差分)
      • 9.2.1 A simple example(一个经典例子)
    • 9.3 Peer collaboration and Q&A  (同伴协作与答疑讨论)
  • 10 Week 10: Vertical case discussions and critiques of DID model applications [face-to-face] (双重差分方法的纵向案例讨论与品鉴 [课堂])
    • 10.1 Introduction (导语)
    • 10.2 Vertical case discussion (案例纵向讨论)
  • 11 Week 11: Principles of regression discontinuity design [online] (断点回归设计 [线上])
    • 11.1 Instruction (导语)
    • 11.2 Technical notes of RDD (断点回归的技术要点)
    • 11.3 Retirement and healthcare utilization (退休与卫生服务利用)
    • 11.4 Peer collaboration and Q&A  (同伴协作与答疑讨论)
  • 12 Week 12: Vertical case discussions and critiques of regression discontinuity design applications [face-to-face] (断点回归设计的纵向案例讨论与品鉴 [课堂])
    • 12.1 Introduction (导语)
    • 12.2 Vertical case discussion (案例纵向讨论)
    • 12.3 News article sharing (学生新闻分享)
  • 13 Week 13: Health policy evaluation and the comprehensive application of econometric models [online] (卫生政策评估与计量模型综合应用 [线上])
    • 13.1 Introduction (导语)
    • 13.2 A comprehensive application (一个综合应用)
    • 13.3 Physician labor market: economic theories(卫生人力市场理论)
    • 13.4 Health insurance policy and physician behaviors (医疗保险政策与医生行为)
    • 13.5 Immunization economics (疫苗经济学)
  • 14 Week 14: Horizontal case discussions and critiques in the application of health policy evaluation [face-to-face] (卫生政策评估应用的横向讨论与品鉴 [课堂])
    • 14.1 Introduction (导语)
    • 14.2 Xintong's talk: prosocial motivation among blood donors (学生讲座:献血者的亲社会动机)
      • 14.2.1 Kristian's Talk: Occupaiton and Health (学生讲座:职业选择与健康)
      • 14.2.2 News article sharing (学生新闻分享)
  • 15 Week 15-1: student practical applications and presentations [online] (学生汇报 [线上])
    • 15.1 Introduction (导语)
    • 15.2 Ye Ma
    • 15.3 Yining Wang
    • 15.4 Tao Yu
    • 15.5 Hongjie Chu
  • 16 Week 15-2: student practical applications and presentations [online] (学生汇报 [线上])
    • 16.1 Introduction (导语)
    • 16.2 Yuting Sun
    • 16.3 Ziyi Chen
    • 16.4 Shuang Zeng
    • 16.5 Jingrao Li
  • 17 Week 16: student practice peer evaluations and discussions [face-to-face] (同伴评价与讨论)
    • 17.1 Introduction (导语)
    • 17.2 Peer collaboration and Q&A  (同伴协作与答疑讨论)
Instruction (导语)

Instruction for Week 7 (第7周导语)

This week we are going to talk about panel data approches. This lecture will be delivered virtually and will consist of two SPOC videos. In Video I, we'll explore an intriguing empirical study that employs a panel data approach, beginning at 10:40. This video, spanning approximately 10 minutes, offers valuable insights into real-world applications. Following that, in Video II, we'll provide a theoretical introduction to handling datasets with a panel structure. This comprehensive discussion, lasting around 20 minutes, equips you with essential knowledge for practical data analysis.

Get ready to engage with these informative videos and deepen your understanding of the subject matter.


  1. Learning objectives (学习目标)

    - gain a preliminary understanding of the relationship between hospital efficiency and waiting times

    - be able to correct interpret coefficients obtained from alternative functional forms

    - understand the core concept of individual fixed effects in addressing omitted variablebias

  2. Key knowledge points (核心知识) 

    - comparison between OLS and fixed effects models 

    - interpretation of coefficients in log-log, log-level, andlevel-log models

    - the roles of fixed effects and random effects models

  3. Learning activities: Flipped classroom-- the online part  (学习活动:翻转课堂-- 线上部分)

    - SPOC videos

    - peer collaboration: knowledge points mind map

    - classical case example: hospital efficiency and waiting times [Siciliani et al. (JHE, 2009)]

    - Q&A: feedback on online learning process via the Tencent collaboration document (https://docs.qq.com/doc/DU01kQUtYVHl2V0hG)

  4. Learning assessment (测评反馈)

    - complete required SPOC videos

    - report difficulties using Tencent collaboration document (https://docs.qq.com/doc/DU01kQUtYVHl2V0hG)

    - joint selection of case materials by the instructor and students