数学方法运用
-
1 数学方法运用
-
2 数学方法运用
上一节
下一节
变量数学
变量数学产生的两个主要步骤都是在十七世纪完成的,因此十七世纪也就成了常量数学向变量数学转变的时期。变量数学的产生,有着极其重要的意义,其具体表现可概括为以下三个方面。
首先,变量数学的产生,使数学自身在思想方法上发生了重大的变革,由此带来整个数学面貌的根本性改观。通过这次变革,常量数学的许多分支学科,诸如代数、几何、三角和数论等,由于变量数学的渗透而在内容上得到了极大的丰富,在思想方法上发生了深刻的变化。

其次,变量数学的产生,使自然科学描述现实物质世界的运动和变化过程成为可能。在现实世界中,“静”和“常”总是暂时的、相对的,“动”和“变”则是永恒的、绝对的。这正如恩格斯所描述的:“整个自然界,从最小的东西到最大的东西,从沙粒到太阳,从原生生物到人,都处于永恒的产生和消灭中,处于不断的流动中,处于无休止的运动和变化中。”自然科学的对象是运动变化着的物质世界,变量数学的产生,为自然科学定量地描述和研究物质世界的运动.变化规律提供了强有力的工具。
第三,变量数学的产生具有重大的哲学意义。变量数学的基本概念变量、函数、极限、导数和微分,以及微分法和积分法,从本质上看,不外是辩证法在数学上的运用。恩格斯曾对此明确指出:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学”。可以说,变量数学的产生,是辩证法在数学中取得的一次根本性胜利。

