基因工程原理与技术

范桂枝,詹亚光 ,曾凡锁, 齐凤慧,尹静

目录

  • 1 基因工程绪论
    • 1.1 知识要点
    • 1.2 基因工程定义
    • 1.3 基因工程的诞生
    • 1.4 基因工程的技术路线
    • 1.5 基因工程的研究内容
    • 1.6 基因工程的安全性
    • 1.7 基因工程的应用
    • 1.8 学习和研究基因工程的意义
    • 1.9 思考题
    • 1.10 本章节参考资料
    • 1.11 调查问卷
  • 2 工具酶
    • 2.1 知识要点
    • 2.2 工具酶定义
    • 2.3 限制性内切酶
      • 2.3.1 限制性内切酶的定义
      • 2.3.2 限制性内切酶的种类
      • 2.3.3 限制性内切酶的命名
      • 2.3.4 限制性内切酶的切割频率
      • 2.3.5 限制性内切酶切割效率
        • 2.3.5.1 星号活性
      • 2.3.6 限制性内切酶切割方式
    • 2.4 连接酶
      • 2.4.1 连接酶的种类和连接条件
      • 2.4.2 连接机理
      • 2.4.3 连接效率
    • 2.5 聚合酶
    • 2.6 其他工具酶
    • 2.7 章节测试
  • 3 载体
    • 3.1 知识要点
    • 3.2 载体的功能和种类
    • 3.3 质粒载体
      • 3.3.1 质粒的基本生物学特征
      • 3.3.2 质粒载体的构建
      • 3.3.3 质粒载体的种类
    • 3.4 噬菌体载体
      • 3.4.1 M13噬菌体载体
      • 3.4.2 λ噬菌体载体
      • 3.4.3 噬菌体—质粒杂合载体
    • 3.5 人工染色体载体
    • 3.6 拓展知识-纳米载体
    • 3.7 章节测试
  • 4 受体细胞recipient cells
    • 4.1 知识要点
    • 4.2 受体细胞的定义
    • 4.3 受体细胞的条件
    • 4.4 受体细胞的种类
    • 4.5 章节测试
  • 5 目的基因的获取target genes
    • 5.1 知识要点Key points
    • 5.2 目的基因的定义Definition of target gene
    • 5.3 目的基因的获取途径Access to target genes
    • 5.4 直接分离方法Direct separation method
    • 5.5 PCR方法获取目的基因
    • 5.6 化学合成DNA  chemosynthesis
    • 5.7 基因文库gene library
    • 5.8 改造目的基因Modification of target gene
    • 5.9 案例分析
    • 5.10 章节测试
  • 6 DNA重组的Recombinant DNA
    • 6.1 知识要点key points
    • 6.2 重组子的构Construction of recombinons
    • 6.3 重组DNA分子的转化和扩增
    • 6.4 重组子的筛选与鉴定
    • 6.5 知识拓展
    • 6.6 章节测试
  • 7 转基因生物
    • 7.1 大肠杆菌基因工程
      • 7.1.1 表达载体
      • 7.1.2 受体系统
      • 7.1.3 表达策略
      • 7.1.4 案例
      • 7.1.5 章节测试
    • 7.2 植物基因工程
      • 7.2.1 转基因植物现状
      • 7.2.2 载体
      • 7.2.3 受体系统
      • 7.2.4 转化方法
      • 7.2.5 基因沉默
      • 7.2.6 案例
      • 7.2.7 章节测试
      • 7.2.8 农杆菌英文课件和资料
    • 7.3 动物基因工程
      • 7.3.1 转化方法
      • 7.3.2 转基因动物的鉴定
      • 7.3.3 提高外源基因在动物中的表达效率的策略
    • 7.4 酵母基因工程
      • 7.4.1 新建课程目录
  • 8 课后阅读
    • 8.1 英文参考书
    • 8.2 转基因食品安全-天使还是魔鬼
    • 8.3 荧光素酶报告基因
    • 8.4 大豆 发芽和转基因有关系吗?
    • 8.5 苦参碱-基因工程改良
    • 8.6 Prime Editing的植物基因组编辑新系统
    • 8.7 液体黄金将借油菜合成
    • 8.8 青蒿素生物合成相关背景
    • 8.9 模式植物拟南芥
    • 8.10 如何利用生物技术培育功能性水稻
    • 8.11 一种高效的油菜转基因和极早期快速和快捷的筛选方法!
    • 8.12 新基因工具有望揭开海洋微生物之谜
    • 8.13 研发中的新冠病毒疫苗包括哪些类型
    • 8.14 基因是如何被调节的
    • 8.15 转化机理综述2019年
    • 8.16 新型报告基因
    • 8.17 2021年太空基因编辑
  • 9 基因工程实验
    • 9.1 实验课简介
    • 9.2 模块一、木本植物的遗传转化
      • 9.2.1 模块一内容的虚拟仿真部分
      • 9.2.2 实验目的及原理
      • 9.2.3 实验内容
        • 9.2.3.1 实验一  菌种活化
          • 9.2.3.1.1 操作方法与思考题
        • 9.2.3.2 实验二  三亲交配法将中间载体质粒导入根癌农杆菌
          • 9.2.3.2.1 三亲杂交原理
          • 9.2.3.2.2 操作方法与思考题
        • 9.2.3.3 实验三 抗生素的敏感性实验
          • 9.2.3.3.1 抑菌原理
          • 9.2.3.3.2 操作方法与思考题
        • 9.2.3.4 实验四  农杆菌介导法的植物遗传转化
          • 9.2.3.4.1 农杆菌介导的转化原理
          • 9.2.3.4.2 操作方法与思考题
        • 9.2.3.5 实验五 基因编辑及原生质体的瞬时转化
          • 9.2.3.5.1 基因编辑原理
          • 9.2.3.5.2 操作方法与思考题
    • 9.3 模块二、转基因植物的检测与鉴定
      • 9.3.1 模块二内容的虚拟仿真实验部分
      • 9.3.2 模块二实验综合内容
      • 9.3.3 实验目的及原理
      • 9.3.4 实验内容
        • 9.3.4.1 实验五 转基因白桦基因组DNA提取
          • 9.3.4.1.1 操作方法与思考题
        • 9.3.4.2 实验六  转基因白桦的多重PCR检测
          • 9.3.4.2.1 操作方法与思考题
        • 9.3.4.3 实验七  外源基因DNA甲基化转基因沉默的关系分析
          • 9.3.4.3.1 操作方法与思考题
        • 9.3.4.4 实验八  外源基因整合的Southern杂交鉴定
          • 9.3.4.4.1 杂交原理与操作
          • 9.3.4.4.2 操作方法与思考题
        • 9.3.4.5 实验九 转基因白桦的RT-PCR检测
          • 9.3.4.5.1 操作方法与思考题
        • 9.3.4.6 实验十 转基因植物中报告基因表达检测-- GUS活性检测
          • 9.3.4.6.1 操作方法与思考题
新基因工具有望揭开海洋微生物之谜
新基因工具有望揭开海洋微生物之谜

 

添加到海洋原生生物(左)的基因在荧光显微镜下显示为绿点(右)。图片来源:YOSHIHISA HIRAKAWA/日本筑波大学

全球50%的氧气都是由海洋微生物产生。然而,这些微小的海洋生物在很大程度上仍然是科学界的一个谜。4月6日发表在《自然—方法学》的研究称,在全球100多名研究人员的努力下,科学家们找到了一种通过细胞和基因技术解开部分海洋生物细胞基因组的方法。

未参与该研究的法国索邦大学国家研究机构CNRS海洋生物学家Angela Falciatore表示,这项研究“将推动浮游生物生物学的进步”。她说,这些进展可能有助于了解生命的早期进化,甚至有可能帮助我们开发出新的抗生素。

海洋浮游生物是一种无形的生命,它们出现时会把海域染成蓝色、绿色甚至是红色。有些浮游生物是单细胞结构,称为原生生物,它们像植物一样,利用光将二氧化碳转化为氧气。原生生物不仅提供我们呼吸需要的氧气,它们同时也是大型浮游生物的食物,而这些大型浮游生物又成为无脊椎动物和鱼类的食物。

未参与该研究的德国康斯坦茨大学藻类生物学家Peter Kroth说:“有大量未经探索的原生生物对这些生态系统产生了巨大影响。”

2015年,戈登和贝蒂·摩尔基金会(一个支持微生物和环境基础研究的慈善组织)向研究人员提供了800万美元研究经费,以填补这一知识空缺。在对动物、植物、酵母和细菌的一系列研究中,当科学家修改生物体的细胞基因时,他们发现了这些细胞基因是如何发挥作用的重要线索。

最终,研究人员汇集了他们的专业知识和洞察力,挑选了39个物种进行研究。这些被研究的对象大都是在经济上的可能会对渔业和娱乐休闲业造成灾难性后果的微生物,如赤潮,还有一些是代表了原生生物家族的不同分支。

研究人员收集了一些微生物,这些微生物主要来自沿海地区的水域,然后再尝试如何培育每一种物种,最后对不同的营养成分和温度进行了测试,以确定哪种方法最有效。

为了探索这些基因,科学家们不得不尝试将外源DNA导入其中,这是一个非常大胆的尝试。他们发现,有时射出包裹着DNA的微小金粒子或钨粒子是使DNA通过细胞膜最有效的方法。有时用电击穿细胞膜,使细胞膜渗漏,用这样的方法可以将DNA挤进细胞。下一步是让这一部分DNA成为细胞基因组的一部分,或者至少被翻译成蛋白质。

细胞基因进入后开始制造蛋白质。有时细胞的防御措施会将其消灭,有时通常用于基因工程的酶在低温下不起作用,研究人员不得不寻找新的酶来完成这项工作Falciatore说:“世界上没有任何一个组织能够独自面对这些技术挑战。”

研究人员总共给13个物种添加了基因,其中包括一种会用其毒素杀死鱼类的原生生物,还有一种也会感染软体动物和两栖动物。

这项工作有助于揭示原生生物是如何工作的。通过改变他们的DNA并监测原生生物的行为、功能或生化变化,研究人员开始了解这些基因的作用。例如,影响原生生物抵抗细菌能力的基因可能编码蛋白质,从而为人类制造新的抗生素。

而在远亲原生生物中做同样事情的基因很可能代表了在早期祖先中已经存在的基因,这为原生生物的进化提供了线索。Kroth说:“我的实验室肯定会受益。”

Genetic tool development in marine protists: emerging model organisms for experimental cell biology