基础生物化学

沈阳农业大学 吕淑霞

目录

  • 1 第一章 绪   论
    • 1.1 绪论 知识点1
  • 2 第二章 蛋白质化学
    • 2.1 蛋白质化学 知识点1
    • 2.2 蛋白质化学 知识点2
    • 2.3 蛋白质化学 知识点3
    • 2.4 蛋白质化学 知识点4
    • 2.5 蛋白质化学 知识点5
    • 2.6 蛋白质化学 知识点6
  • 3 第三章 核酸化学
    • 3.1 核酸化学 知识点1
    • 3.2 核酸化学 知识点2
    • 3.3 核酸化学 知识点3
    • 3.4 核酸化学 知识点4
    • 3.5 核酸化学 知识点5
  • 4 第四章 酶
    • 4.1 酶 知识点1
    • 4.2 酶 知识点2
    • 4.3 酶 知识点3
    • 4.4 酶 知识点4
    • 4.5 酶 知识点5
    • 4.6 酶 知识点6
    • 4.7 酶 知识点7
  • 5 第五章 糖类代谢
    • 5.1 糖类代谢 知识点1
    • 5.2 糖类代谢 知识点2
    • 5.3 糖类代谢 知识点3
    • 5.4 糖类代谢 知识点4
  • 6 第六章生物氧化和氧化磷酸化
    • 6.1 生物氧化和氧化磷酸化 知识点1
    • 6.2 生物氧化和氧化磷酸化 知识点2
    • 6.3 生物氧化和氧化磷酸化 知识点3
    • 6.4 生物氧化和氧化磷酸化 知识点4
  • 7 第七章 脂类代谢
    • 7.1 脂类代谢 知识点1
    • 7.2 脂类代谢 知识点2
    • 7.3 脂类代谢 知识点3
    • 7.4 脂类代谢 知识点4
    • 7.5 脂类代谢 知识点5
    • 7.6 脂类代谢 知识点6
  • 8 第八章 蛋白质降解和氨基酸代谢
    • 8.1 蛋白质降解和氨基酸代谢 知识点1
    • 8.2 蛋白质降解和氨基酸代谢 知识点2
    • 8.3 蛋白质降解和氨基酸代谢 知识点3
  • 9 第九章 核酸降解和核苷酸代谢
    • 9.1 核酸降解和核苷酸代谢 知识点1
    • 9.2 核酸降解和核苷酸代谢 知识点2
    • 9.3 核酸降解和核苷酸代谢 知识点3
  • 10 第十章 核酸的生物合成
    • 10.1 核酸的生物合成 知识点1
    • 10.2 核酸的生物合成 知识点2
    • 10.3 核酸的生物合成 知识点3
    • 10.4 核酸的生物合成 知识点4
  • 11 第十一章 蛋白质的生物合成
    • 11.1 蛋白质的生物合成 知识点1
    • 11.2 蛋白质的生物合成 知识点2
    • 11.3 蛋白质的生物合成 知识点3
  • 12 第十二章  代谢调节
    • 12.1 代谢调节 知识点1
    • 12.2 代谢调节 知识点2
蛋白质的生物合成 知识点1
  • 1 理论教学
  • 2 实践演练








熟悉遗传密码的生物特性,掌握氨基酰-tRNA合成酶的催化活性及特异性,掌握三种RNA在蛋白质合成中的功能。




要点: 参与翻译过程的物质:需要20种氨基酸作为原料、三种RNA、蛋白质因子(起始因子IF、延长因子EF及释放因子RF)、酶和ATPGTP等,共同协调完成蛋白质合成。

一、mRNA是翻译的直接模板

mRNA3个碱基组成三联体密码子,决定一个氨基酸的信息。有64个密码子,其中mRNA 5'端的AUG称为起始密码。UAGUAAUGA为肽链合成的终止信号,其余61个密码子代表20种氨基酸。密码阅读方向是从53,决定翻译的方向性。

遗传密码有以下生物特性:

(1) 遗传密码的连续性,即从AUG开始,各密码子连续阅读而无间断,若有碱基插入或缺失,会造成框移突变;

(2) 简并性,大部分氨基酸有多个密码子,以24个居多,可有6个。这种由多种密码编码一种氨基酸的现象称为简并性。决定同一种氨基酸密码子的头两个碱基是相同的,第三位碱基不同,第三位碱基发生点突变时仍可翻译出正常的氨基酸;

(3) 摆动性,mRNA密码子的前两位碱基和tRNA的反密码严格配对。而密码第三位碱基与反密码第一位碱基不严格遵守配对规则,称为密码配对的摆动性。  

(4)通用性,生物体的遗传密码相同,称密码的普遍性。但线粒体密码子有例外。如AUAAUG均代表Met和起始密码子;UGATrp密码子而不是终止密码子等。

二、核蛋白体是肽链合成的场所

核蛋白体由大、小亚基构成,每个亚基含不同的蛋白质和rRNA。大亚基有转肽酶活性,有容纳tRNA的二个部位:A位,即氨基酰位;P位,即肽酰位。

三、tRNA

tRNA的作用是携带并转运特异氨基酸。tRNA分子上3'端的CCA序列是结合氨基酸的部位,反密码环可特异识别mRNA的密码序列。



遗传密码的破译

基因密码的破译是六十年代分子生物学最辉煌的成就。先后经历了五十年代的数学推理阶段和1961-1965年的实验研究阶段。1954年,物理学家GeorgeGamov根据在DNA中存在四种核苷酸,在蛋白质中存在二十种氨基酸的对应关系,认为三个核苷酸为一个氨基酸编码,可编64种氨基酸(43=64),即可满足蛋白质合成的的需要。随后破译密码的实验研究先后由三个实验逐步发展了四种破译方法,最终由重复共聚物法破译完成。

NishimuraJones,和Khorana等人制备了已知的核苷酸重复序列。蛋白质在核糖体上的合成可以在这些有规律的共聚物的任一点开始,并把特异的氨基酸参入肽链。例如,重复序列CUCUCUCUCU......是多肽Leu-Ser-Leu-Ser......或者是多肽Ser-Leu-Ser......的信使分子。使用共聚物构成三核苷酸为单位的重复顺序,如(AAG)n,它可合成三种类型的多肽:polyLyspolyArgpolyGlu,即AAGLys的密码子,AGAArg的密码子,GAAGlu的密码子。又如(AUC)n序列是polyIlepolySerpolyHis的模板。如此至1965年破译了所有氨基酸的密码子,尼伦伯格与霍拉纳于1968年荣获诺贝尔生理学医学奖。