高等数学II

高亚萍

目录

  • 第一章 函数与极限
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲 第六节  第七节;
    • ● 第七讲
    • ● 第八讲
    • ● 第九讲 第一章习题解答
    • ● 本章电子教案
  • 第二章 导数与微分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
  • 第三章 微分中值定理与导数的应用
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
  • 第四章  不定积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案、练习题
  • 第五章 定积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
    • ● 本章电子教案、练习题
  • 第六章  定积分的应用
    • ● 第一讲
    • ● 第二讲
    • ● 本章电子教案
  • 第七章 微分方程
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 第八章  向量代数与空间解析几何
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
    • ● 第六讲
    • ● 本章电子教案
  • 第九章  多元函数微分法及其应用
    • ● 第一节
    • ● 第二节
    • ● 第三节
    • ● 第四节
    • ● 第五节
      • ● 前五节习题课
    • ● 第六节
    • ● *第七节
    • ● 第八节
    • ● 本章电子教案
  • 第十章   重积分
    • ● 第一讲
    • ● 第二讲
    • ● *第三讲
    • ● *第四讲
    • ● 本章电子教案
  • 第十一章   曲线积分与曲面积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 第十二章  无穷级数
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 高等数学(同济第7版)
    • ● 函数与极限
      • ● 本章要点
    • ● 导数与微分
      • ● 本章要点
    • ● 中值定理与导数的应用
      • ● 本章要点
    • ● 不定积分
      • ● 本章要点
    • ● 定积分
      • ● 本章要点
    • ● 定积分的应用
      • ● 本章要点
    • ● 微分方程
      • ● 本章要点
    • ● 空间向量解析几何与向量代数
      • ● 本章要点
    • ● 多元函数微分法及其应用
      • ● 本章要点
    • ● 重积分
      • ● 本章要点
    • ● 曲线积分与曲面积分
      • ● 本章要点
    • ● 无穷级数
      • ● 本章要点
第一讲

授课题目:

                第十章 重积分 

§1 二重积分的概念与性质  §2二重积分的计算法


授课方式: 主讲+互动

教学目的与要求:

1.理解掌握二重积分的概念、性质;

2.理解掌握二重积分在直角坐标系下的计算.


主 要 内 容 ( 按 教 学 大 纲 要 求 ):


  §1 二重积分的概念与性质

一、二重积分的概念

1.曲顶柱体的体积

2.平面薄片的质量

3.二重积分的定义

4.说明几点

二、二重积分的性质

性质1,2,3,4,5,6


§2二重积分的计算法

一、利用直角坐标计算二重积分

总结知识要点布置作业                           




























重点难点:

1.重点:二重积分的概念、性质、二重积分在直角坐标系下的计算;

2.难点:同上.

外语词汇:

Definition (The Double Integral) Let  be a bounded closed region in the   plane and   a function defined on  . Partition   arbitrarily into   subregions  ,whose area is denoted by  , Choose arbitrarily a point  in   and then form the sum  .Suppose that there exists a fixed number I such that for any  ,there exists a   such that if  the length  of the longest diameter of those subregions   in a partition of   is less than  ,then  ,no matter how the partition is and how those points   are chosen from  .Then   is said to be integrable over   and  I  is the double integral of over  ,written  , or 

               


复习思考题、课堂测试题、课外作业:

习题10—1  :全做