高等数学II

高亚萍

目录

  • 第一章 函数与极限
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲 第六节  第七节;
    • ● 第七讲
    • ● 第八讲
    • ● 第九讲 第一章习题解答
    • ● 本章电子教案
  • 第二章 导数与微分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
  • 第三章 微分中值定理与导数的应用
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
  • 第四章  不定积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案、练习题
  • 第五章 定积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
    • ● 本章电子教案、练习题
  • 第六章  定积分的应用
    • ● 第一讲
    • ● 第二讲
    • ● 本章电子教案
  • 第七章 微分方程
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 第八章  向量代数与空间解析几何
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 第五讲
    • ● 第六讲
    • ● 本章电子教案
  • 第九章  多元函数微分法及其应用
    • ● 第一节
    • ● 第二节
    • ● 第三节
    • ● 第四节
    • ● 第五节
      • ● 前五节习题课
    • ● 第六节
    • ● *第七节
    • ● 第八节
    • ● 本章电子教案
  • 第十章   重积分
    • ● 第一讲
    • ● 第二讲
    • ● *第三讲
    • ● *第四讲
    • ● 本章电子教案
  • 第十一章   曲线积分与曲面积分
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 第十二章  无穷级数
    • ● 第一讲
    • ● 第二讲
    • ● 第三讲
    • ● 第四讲
    • ● 本章电子教案
  • 高等数学(同济第7版)
    • ● 函数与极限
      • ● 本章要点
    • ● 导数与微分
      • ● 本章要点
    • ● 中值定理与导数的应用
      • ● 本章要点
    • ● 不定积分
      • ● 本章要点
    • ● 定积分
      • ● 本章要点
    • ● 定积分的应用
      • ● 本章要点
    • ● 微分方程
      • ● 本章要点
    • ● 空间向量解析几何与向量代数
      • ● 本章要点
    • ● 多元函数微分法及其应用
      • ● 本章要点
    • ● 重积分
      • ● 本章要点
    • ● 曲线积分与曲面积分
      • ● 本章要点
    • ● 无穷级数
      • ● 本章要点
第一讲

授课题目:

第十二章 无穷级数  §1  常数项级数的概念和性质

          §2  常数项级数的审敛法




授课方式: 主讲+互动

教学目的与要求:

1.理解掌握常数项级数的概念和性质;

2.理解掌握利用级数收敛与发散的定义判定级数的收敛性.

主 要 内 容 ( 按 教 学 大 纲 要 求 )






















  

§1  常数项级数的概念和性质

一、常数项级数的概念

1.问题的提出回忆

2.常数项级数的定义

3.无穷级数收敛与发散的定义

二、收敛级数的基本性质

§2  常数项级数的审敛法

一、正项级数及其审敛法

1.正项级数收敛的充要条件


总结知识要点布置作业                           



重点难点:

1.重点:常数项级数的概念和性质、无穷级数收敛与发散的定义

2.难点:同上.


外语词汇:

General term; partial sum; geometric series; common ratio; harmonic series; series of positive terms; D’Alembert test; Cauchy test; alternating series; absoulutely convergent; conditionally convergent; series of functions; point of divergence; point of convergencd; convergencd domain; sum function; power series; power series; coefficients of power series; Abel Theorem; radius of convergence; interval of convergence; Taylor series; Maclaurin series

复习思考题、课堂测试题、课外作业:

习题12--1  :1;2;3;4

推荐课外优秀教学视频: