高等数学

高亚萍

目录

  • 1 第一章 函数与极限
    • 1.1 第一讲
    • 1.2 第二讲
    • 1.3 第三讲
    • 1.4 第四讲
    • 1.5 第五讲 第六节  第七节;
    • 1.6 第七讲
    • 1.7 第八讲
    • 1.8 第九讲 第一章习题解答
    • 1.9 本章电子教案
  • 2 第二章 导数与微分
    • 2.1 第一讲
    • 2.2 第二讲
    • 2.3 第三讲
    • 2.4 第四讲
  • 3 第三章 微分中值定理与导数的应用
    • 3.1 第一讲
    • 3.2 第二讲
    • 3.3 第三讲
    • 3.4 第四讲
    • 3.5 第五讲
  • 4 第四章  不定积分
    • 4.1 第一讲
    • 4.2 第二讲
    • 4.3 第三讲
    • 4.4 第四讲
    • 4.5 本章电子教案、练习题
  • 5 第五章 定积分
    • 5.1 第一讲
    • 5.2 第二讲
    • 5.3 第三讲
    • 5.4 第四讲
    • 5.5 第五讲
    • 5.6 本章电子教案、练习题
  • 6 第六章  定积分的应用
    • 6.1 第一讲
    • 6.2 第二讲
    • 6.3 本章电子教案
  • 7 第七章 微分方程
    • 7.1 第一讲
    • 7.2 第二讲
    • 7.3 第三讲
    • 7.4 第四讲
    • 7.5 本章电子教案
  • 8 第八章  向量代数与空间解析几何
    • 8.1 第一讲
    • 8.2 第二讲
    • 8.3 第三讲
    • 8.4 第四讲
    • 8.5 第五讲
    • 8.6 第六讲
    • 8.7 本章电子教案
  • 9 第九章  多元函数微分法及其应用
    • 9.1 第一节
    • 9.2 第二节
    • 9.3 第三节
    • 9.4 第四节
    • 9.5 第五节
      • 9.5.1 前五节习题课
    • 9.6 第六节
    • 9.7 *第七节
    • 9.8 第八节
    • 9.9 本章电子教案
  • 10 第十章   重积分
    • 10.1 第一讲
    • 10.2 第二讲
    • 10.3 *第三讲
    • 10.4 *第四讲
    • 10.5 本章电子教案
  • 11 第十一章   曲线积分与曲面积分
    • 11.1 第一讲
    • 11.2 第二讲
    • 11.3 第三讲
    • 11.4 第四讲
    • 11.5 本章电子教案
  • 12 第十二章  无穷级数
    • 12.1 第一讲
    • 12.2 第二讲
    • 12.3 第三讲
    • 12.4 第四讲
    • 12.5 本章电子教案
  • 13 高等数学(同济第7版)
    • 13.1 函数与极限
      • 13.1.1 本章要点
    • 13.2 导数与微分
      • 13.2.1 本章要点
    • 13.3 中值定理与导数的应用
      • 13.3.1 本章要点
    • 13.4 不定积分
      • 13.4.1 本章要点
    • 13.5 定积分
      • 13.5.1 本章要点
    • 13.6 定积分的应用
      • 13.6.1 本章要点
    • 13.7 微分方程
      • 13.7.1 本章要点
    • 13.8 空间向量解析几何与向量代数
      • 13.8.1 本章要点
    • 13.9 多元函数微分法及其应用
      • 13.9.1 本章要点
    • 13.10 重积分
      • 13.10.1 本章要点
    • 13.11 曲线积分与曲面积分
      • 13.11.1 本章要点
    • 13.12 无穷级数
      • 13.12.1 本章要点
第六节


授课题目: 第九章 多元函数微分法及其应用 

            §6 多元函数微分学的几何应用


授课方式: 主讲+互动

教学目的与要求:

1.掌握空间曲线的切线与法平面;

2.掌握空间曲面的切平面与法线的概念及求法.

主 要 内 容 ( 按 教 学 大 纲 要 求 ):

  

§6 多元函数微分学的几何应用


一、空间曲线的切线与法平面                        

  

1.空间曲线方程为参数方程形式  例1

  2.空间曲线方程为 形式

3.空间曲线方程为 形式   例2

二、曲面的切平面与法线                       

  

1.曲面方程为          形式


2.曲面方程为          形式                           

              例3、例4

三、习题练习


总结与布置作业                           

































重点难点:

1.重点:空间曲线的切线与法平面;空间曲面的切平面与法线

2.难点:同上.


外语词汇:

Assume that the curve  is given by the parametric equations  , and functions   are differentiable on the interval  .Assume also that point   corresponds the value   of parameter  , then the equation of the tangent line to the curve   at point   is given by 

 

复习思考题、课堂测试题、课外作业: 习题 9 --6:1~10题.