目录

  • 1 绪论
    • 1.1 绪论
    • 1.2 直播入口
  • 2 蛋白质的结构与功能
    • 2.1 蛋白质的分子组成
    • 2.2 蛋白质的分子结构
    • 2.3 蛋白质结构与功能的关系
    • 2.4 蛋白质的理化性质
    • 2.5 蛋白质的分离和纯化
  • 3 核酸的组成与结构
    • 3.1 概述
    • 3.2 核酸的理化性质
    • 3.3 核酸的分离纯化与测定
    • 3.4 反义核酸技术及核酸药物(自学)
  • 4 第五章 酶
    • 4.1 酶的分类、分子组成与结构
      • 4.1.1 酶的分类
      • 4.1.2 酶的分子组成
      • 4.1.3 酶的结构与功能
    • 4.2 酶的催化作用
    • 4.3 酶促反应动力学
      • 4.3.1 底物浓度、酶浓度对酶促反应速率的影响
      • 4.3.2 温度、pH值、激活剂对酶促反应速率的影响
      • 4.3.3 抑制剂对酶促反应速率的影响
    • 4.4 酶的调节
    • 4.5 酶的分离提纯与活性测定
    • 4.6 酶与医药的关系
  • 5 第四章 维生素
    • 5.1 概述
    • 5.2 脂溶性维生素
    • 5.3 水溶性维生素
  • 6 第七章 糖代谢
    • 6.1 第一节 概述
    • 6.2 第二节 糖的消化与吸收
    • 6.3 第三节 葡萄糖分解代谢
      • 6.3.1 一、糖的无氧氧化途径
      • 6.3.2 二、糖的有氧氧化途径
      • 6.3.3 三、磷酸戊糖途径
    • 6.4 第四节 糖原的合成与分解
      • 6.4.1 一、糖原合成
      • 6.4.2 二、糖原分解
      • 6.4.3 三、糖原合成与分解的生理意义及调节机制
    • 6.5 第五节 糖异生
    • 6.6 第六节 血糖
    • 6.7 第七节 糖代谢紊乱
  • 7 第六章 生物氧化
    • 7.1 第一节 概述
    • 7.2 第二节 线粒体氧化体系
      • 7.2.1 一、呼吸链的主要成分
      • 7.2.2 二、呼吸链中的电子传递顺序
      • 7.2.3 三、主要的呼吸链
      • 7.2.4 四、ATP的生成、储存与利用
        • 7.2.4.1 (一)ATP的结构与相互转换作用
        • 7.2.4.2 (二)ATP的生成方式
      • 7.2.5 五、胞液中NADH的氧化
    • 7.3 第三节 非线粒体氧化体系
  • 8 脂代谢
    • 8.1 第一节 概述
      • 8.1.1 一、脂类的概念与生物学功能
      • 8.1.2 二、脂类的消化、吸收和储存
      • 8.1.3 三、脂类的运输和血浆脂蛋白
    • 8.2 第二节 脂肪的分解代谢
      • 8.2.1 一、脂肪动员
      • 8.2.2 二、甘油的氧化分解
      • 8.2.3 三、脂肪酸的氧化分解
      • 8.2.4 四、酮体的生成和利用
    • 8.3 第三节 脂肪的合成代谢
    • 8.4 第四节 类脂的代谢
      • 8.4.1 一、磷脂的代谢
      • 8.4.2 二、胆固醇的代谢
    • 8.5 第五节 类二十烷酸的生物合成(自学)
    • 8.6 第六节 脂类与药物科学
  • 9 蛋白质的分解代谢
    • 9.1 第一节 蛋白质的营养作用
    • 9.2 第二节 蛋白质的消化、吸收与腐败
    • 9.3 第三节 氨基酸的一般代谢
    • 9.4 第四节 氨的代谢
      • 9.4.1 一、氨的来源、去路及转运
      • 9.4.2 二、尿素的合成、调节及高血氨症、氨中毒
    • 9.5 第五节 个别氨基酸的代谢
  • 10 核酸与核苷酸代谢
    • 10.1 第一节 概述
    • 10.2 第二节 嘌呤核苷酸的代谢
    • 10.3 第三节 嘧啶核苷酸的代谢
    • 10.4 第四节 核苷酸代谢和药物科学
  • 11 第十二章 代谢和代谢调控总论
    • 11.1 第一节 代谢的基本概念及特点
    • 11.2 第二节 物质代谢之间的相互联系
    • 11.3 第三节 代谢的调节
  • 12 第十三章 DNA的生物合成
    • 12.1 第一节 DNA的复制
      • 12.1.1 一、DNA复制的特点
      • 12.1.2 二、参与DNA复制的酶及蛋白因子
      • 12.1.3 三、原核生物DNA复制过程
      • 12.1.4 四、真核生物DNA复制过程
    • 12.2 第二节 逆转录与端粒
    • 12.3 第三节 DNA的损伤与修复
      • 12.3.1 一、DNA损伤
      • 12.3.2 二、DNA的修复
    • 12.4 第四节 DNA生物合成与药物科学(自学)
  • 13 第十四章 RNA的生物合成
    • 13.1 第一节 转录
      • 13.1.1 一、转录体系及转录特点
      • 13.1.2 二、RNA聚合酶
      • 13.1.3 三、原核生物的转录过程
      • 13.1.4 四、真核生物的转录过程
      • 13.1.5 五、转录后加工
    • 13.2 第二节 基因转录的调节
      • 13.2.1 一、原核细胞转录水平的调节——操纵子学说
      • 13.2.2 二、真核细胞基因转录的调节
    • 13.3 第三节 RNA生物合成与药物科学
  • 14 第十五章 蛋白质的生物合成
    • 14.1 第一节 蛋白质合成体系
    • 14.2 第二节 氨基酸与tRNA的连接
    • 14.3 第三节 肽链的生物合成过程
    • 14.4 第四节 蛋白质合成后的加工和靶向输送
    • 14.5 第五节 蛋白质生物合成的干扰与抑制
  • 15 第十六章 药物在体内的转运与代谢转化
    • 15.1 第一节 药物体内转运
    • 15.2 第二节 药物代谢
    • 15.3 第三节 影响药物代谢转化的因素
    • 15.4 第四节 药物代谢转化的意义
  • 16 第十七章 药物研究的生物化学基础
    • 16.1 第一节 生物药物制备的生物化学基础
    • 16.2 第二节 药理学研究的生物化学基础
    • 16.3 第三节 药物设计的生物化学基础
    • 16.4 第四节 药物质量控制的生物化学基础
    • 16.5 第五节 药剂学研究的生物化学基础
  • 17 PCR技术的原理与应用
    • 17.1 PCR技术的基本原理
    • 17.2 PCR技术的主要用途
  • 18 重组DNA技术
    • 18.1 重组DNA技术
    • 18.2 重组DNA技术在医学中的应用
  • 19 实验:纸层析法鉴定转氨基作用
    • 19.1 教学视频
    • 19.2 实验指导
  • 20 综合复习
    • 20.1 综合复习
蛋白质的理化性质
  • 1
  • 2



一、蛋白质的两性解离及等电点

1. 蛋白质的等电点(pI):

1.1 定义:

 当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

1.2 解离式:

1.3 结论:

pH < pI,Pr解离成阳离子;

pH = pI,Pr为兼性离子;

pH > pI,Pr解离成阴离子。

二、蛋白质的胶体性质

蛋白质是生物大分子,分子量在1万~10万之间,分子直径在胶体颗粒的范围(1~ 100nm),因此具有胶体的性质。

影响蛋白质胶体稳定的因素:颗粒表面电荷、水化膜

例如:加乙醇、丙酮使Pr沉淀——竞争水分子,破坏水化膜

三、蛋白质的紫外吸收性质

    由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm波长处有特征性吸收峰。

四、蛋白质的呈色反应

1. 双缩脲反应(biuret reaction)

       蛋白质和多肽分子中肽键在稀碱溶液中与硫酸铜共热,呈现紫色或红色,可用来检测蛋白质水解程度。

2. Folin-酚试剂反应

       蛋白质碱性条件下,与酚试剂反应(磷钼酸与磷钨酸的混合物),生成蓝色化合物

3. 茚三酮反应(ninhydrin reaction)

      蛋白质经水解后产生的氨基酸也可发生茚三酮反应,生成蓝紫色化合物

五、蛋白质的变性、复性

1. 变性:

3.1 定义:

在某些物理或化学因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质改变和生物活性丧失,称为蛋白质的变性。

3.2 变性的本质:

破坏非共价键和二硫键,不改变蛋白质的一级结构

3.3 造成变性的因素:

加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等

3.4 变性后理化性质的改变:

溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解

3.5 应用举例:

如临床上的消毒、杀菌;保护蛋白制剂(如疫苗)等

2. 复性

若蛋白质变性程度较轻,去除变性因素后,蛋白质仍可恢复或部分恢复其原有的构象和功能,称为复性。

3. 沉淀:

蛋白质自溶液中析出的现象称为沉淀。变性的蛋白质易于沉淀,但不一定都发生沉淀;沉淀的蛋白质易发生变性,但并不都变性,如盐析。

4. 凝固:

加热使蛋白质变性并结成凝块,此凝块不再溶于强酸或强碱中的现象称为蛋白质的凝固作用。凝固是蛋白质变性后进一步发展的不可逆结果。

简单复习本知识点的内容:

1.什么是蛋白质等电点。

2.蛋白质胶体性质的维系因素有哪些?

3.什么是蛋白质变性,变性的本质,变性后哪些理化因素发生改变

4.蛋白质变性与沉淀有什么关系。